where

$$
\begin{equation*}
\Psi(t)=\frac{f(t)}{W^{\prime}(t)}=\frac{4 \pi G \rho-2 \omega^{2}}{g_{P}(t)} \tag{4-142}
\end{equation*}
$$

depends only on the parameter t labeling the equisurfaces and contains the physics of the problem: the density ρ, the rotational velocity ω, the potential W and gravity g : we recall that

$$
\begin{equation*}
g_{P}(t)=-W^{\prime}(t)=-\frac{d W(t)}{d t} \tag{4-143}
\end{equation*}
$$

represents gravity along the rotation axis $(\Theta=0)$.
On the right-hand side of (4-141) we have quantities characterizing the geometry of the stratification:

$$
\begin{equation*}
X=[N(t, \Theta)]^{2} \tag{4-144}
\end{equation*}
$$

where

$$
\begin{equation*}
N=\frac{d n}{d t} \tag{4-145}
\end{equation*}
$$

is a measure of the distance between neighboring equisurfaces, and

$$
\begin{equation*}
Y=Y(t, \Theta)=2 J N-\partial \ln N / \partial t \tag{4-146}
\end{equation*}
$$

J denoting the mean curvature of the equisurfaces.

4.3.1 General Formulas for X and Y

We shall first derive formulas for the quantity N, the mean curvature J, and hence of X and Y, for a general surface of revolution. We use spherical coordinates r, θ, λ. Because of rotational symmetry, there is no dependence on longitude λ, and please distinguish the spherical distance θ from the parameter Θ labeling the plumb lines (sec. 3.2.1).

Let the meridian section ($\lambda=$ const.) of the surface of revolution have the equation

$$
\begin{equation*}
r=r(\theta) \tag{4-147}
\end{equation*}
$$

By a standard formula which can be found in any text on elementary calculus, the radius of curvature of the meridian in plane polar coordinates r, θ is given by

$$
\begin{equation*}
\frac{1}{R_{1}}=\frac{r^{2}+2 r_{\theta}^{2}-r r_{\theta \theta}}{\left(r^{2}+r_{\theta}^{2}\right)^{3 / 2}} \tag{4-148}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{\theta}=\frac{\partial r}{\partial \theta}, \quad r_{\theta \theta}=\frac{\partial^{2} r}{\partial \theta^{2}} \tag{4-149}
\end{equation*}
$$

as usual. This is already one principal radius of curvature for our surface.
The other principal radius is the normal radius of curvature R_{2} well-known from ellipsoidal geometry. It is the length of the surface normal from a surface point to its intersection with the rotation axis which for the time being, we take as x-axis (in

FIGURE 4.7: The normal radius of curvature
order to have $x=r \cos \theta, y=r \sin \theta$ as usual for plane polar coordinates). This holds not only for the ellipsoid, but also for an arbitrary surface of revolution; cf. sec. 1.4.

From Fig. 4.7 we read

$$
y=r \sin \theta=R_{2} \sin \theta^{\prime}
$$

whence

$$
\begin{equation*}
R_{2}=r \frac{\sin \theta}{\sin \theta^{\prime}} \tag{4-150}
\end{equation*}
$$

The elementary triangle at P, shown in a magnified manner next to the main diagram (Fig. 4.7), gives

$$
\begin{equation*}
\sin \theta^{\prime}=-\frac{d x}{d s} \tag{4-151}
\end{equation*}
$$

Differentiating $x=r \cos \theta$ we have

$$
\begin{equation*}
d x=d r \cos \theta-r \sin \theta d \theta \tag{4-152}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
d s^{2}=d r^{2}+r^{2} d \theta^{2} \tag{4-153}
\end{equation*}
$$

In both formulas we put

$$
\begin{equation*}
d r=r_{\theta} d \theta \tag{4-154}
\end{equation*}
$$

by (4-149); in fact, by (4-147), r depends on θ only, so that here

$$
\begin{equation*}
r_{\theta}=\frac{\partial r}{\partial \theta}=\frac{d r}{d \theta} \tag{4-155}
\end{equation*}
$$

(for the sake of generality, we keep the notation $\partial r / \partial \theta$ because later on r will depend on t as well).

In view of (4-154) we may write (4-152) and (4-153) as

$$
\begin{align*}
-d x & =r \sin \theta\left(1-\frac{r_{\theta}}{r} \cot \theta\right) d \theta, \tag{4-156}\\
d s & =\sqrt{r^{2}+r_{\theta}^{2}} d \theta,
\end{align*}
$$

and substitute into $(4-151)$ and then into ($4-150$). The result is

$$
\begin{equation*}
\frac{1}{R_{2}}=\frac{1}{\sqrt{r^{2}+r_{\theta}^{2}}}\left(1-\frac{r_{\theta}}{r} \cot \theta\right) \tag{4-157}
\end{equation*}
$$

Combining ($4-148$) and ($4-157$) we thus have for the mean curvature ($1-20$)

$$
\begin{equation*}
J=\frac{1}{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=\frac{1}{2 \sqrt{r^{2}+r_{\theta}^{2}}}\left(2-\frac{r_{\theta}}{r} \cot \theta+\frac{r_{\theta}^{2}-r r_{\theta \theta}}{r^{2}+r_{\theta}^{2}}\right) . \tag{4-158}
\end{equation*}
$$

Consider now Wavre's function (4-145),

$$
N=\frac{d n}{d t}
$$

using Fig. 4.8. Along the straight line $O P^{\prime}$ we obviously have $\theta=$ const., so that

FIGURE 4.8: The distance between two neighboring equisurfaces

$$
d r_{1}=r_{t} d t=\frac{\partial r}{\partial t} d t
$$

which is the change of r because of t only. From the enlarged part of Fig. 4.8 we read

$$
d n=d r_{1} \cos \delta=r_{t} d t \cos \delta,
$$

whence

$$
N=\frac{d n}{d t}=r_{t} \cos \delta
$$

On the other hand the enlarged figure shows that

$$
\cos \delta=\frac{r d \theta}{d s}=\frac{r}{\sqrt{r^{2}+r_{\theta}^{2}}}
$$

by ($4-156$). Thus we find

$$
\begin{equation*}
N=\frac{r r_{t}}{\sqrt{r^{2}+r_{\theta}^{2}}} \tag{4-159}
\end{equation*}
$$

Eqs. (4-158) and (4-159) are basic. Their substitution into (4-144) and (4-146) finally gives

$$
\begin{align*}
X & =N^{2}=\frac{r^{2} r_{t}^{2}}{r^{2}+r_{\theta}^{2}} \tag{4-160}\\
Y & =A-B-C \tag{4-161}\\
A & =2 J N=\frac{r r_{t}}{r^{2}+r_{\theta}^{2}}\left(2-\frac{r_{\theta}}{r} \cot \theta+\frac{r_{\theta}^{2}-r r_{\theta \theta}}{r^{2}+r_{\theta}^{2}}\right) \tag{4-162}\\
B & =\frac{\partial \ln N}{\partial t}=\frac{r_{t}}{r}+\frac{r_{t t}}{r_{t}}-\frac{r r_{t}+r_{\theta} r_{\theta t}}{r^{2}+r_{\theta}^{2}} \tag{4-163}
\end{align*}
$$

So far, everything has been quite straightforward. A fine point must be made, however. In $(4-146), \partial / \partial t$ means the derivative with respect to t for constant Θ, i.e., along the plumb line, whereas in (4-163), $\partial / \partial t$ denotes the derivative also with respect to t but for constant θ, i.e., along the radius vector. This fact must be taken into account by adding in (4-161) a correction C. This " θ-correction" will be considered in the next section.

4.3.2 Series Expansions

Let us now represent the equation of the set of equisurfaces in the form

$$
\begin{equation*}
r=r(t, \theta)=t\left(1+\alpha \sin ^{2} \theta+\epsilon \sin ^{4} \theta\right) \tag{4-164}
\end{equation*}
$$

$\alpha=\alpha(t)$ being a first-order term approximately equal to the flattening f $\left(\alpha=f+O\left(f^{2}\right)\right)$, and $\epsilon=\epsilon(t)$ being a second-order term of order $f^{2} \doteq \alpha^{2}$. Terms of order higher than two will consistently be neglected. If $t=$ const., then we get the equation of an equisurface, which plainly is of form (4-147).

The above representation is equivalent to a spherical-harmonic expansion to $n=4$, containing P_{2} and P_{4} such as (4-11), but it is easier to manipulate for our present purpose. For later reference we form the partial derivatives:

