Eliminating S_{1} between (4-93) and (4-94) yields

$$
\dot{e}\left(1+\frac{4}{7} e-\frac{4}{21} m\right)=\frac{5}{2} m\left(1+\frac{8}{21} e\right)-2 e\left(1+\frac{2}{7} e\right)
$$

which on multiplication by ($1-\frac{4}{7} e+\frac{4}{21} m$) gives the desired boundary (or initial) condition

$$
\begin{equation*}
\dot{e}=\frac{5}{2} m-2 e+\frac{4}{7} e^{2}-\frac{6}{7} e m+\frac{10}{21} m^{2} \tag{4-95}
\end{equation*}
$$

This is the second-order equivalent of (2-118).
As the second boundary condition we may regard the surface flattening $f=f(1)$ as given. Furthermore, the ellipticity e must be finite at the earth's center, for $\beta=0$.

4.2.3 Radau's Transformation

Following sec. 2.6, we introduce Radau's parameter η by

$$
\begin{equation*}
\eta=\frac{\beta}{e} \frac{d e}{d \beta}=\frac{\beta}{e} \dot{e} \tag{4-96}
\end{equation*}
$$

Substituting

$$
\begin{equation*}
\dot{e}=\frac{\eta}{\beta} e, \quad \ddot{e}=\left(\frac{1}{\beta} \frac{d \eta}{d \beta}+\frac{\eta^{2}-\eta}{\beta^{2}}\right) e \tag{4-97}
\end{equation*}
$$

(by (2-123)) into (4-91) and dividing by e gives the second-order Radau equation

$$
\begin{equation*}
\beta \frac{d \eta}{d \beta}+\eta^{2}-\eta-6+6 \frac{\delta}{D}(1+\eta)=\frac{4}{7}\left(1-\frac{\delta}{D}\right) \xi \tag{4-98}
\end{equation*}
$$

where (4-92) takes the simpler form

$$
\begin{equation*}
\xi=7 \mu(1+\eta)-3 e(1+\eta)^{2}-4 e \tag{4-99}
\end{equation*}
$$

in view of (4-97). Following the derivation of sec. 2.6 formula by formula, we get (2-134):

$$
\begin{equation*}
\frac{d}{d \beta}\left(D \beta^{5} \sqrt{1+\eta}\right)=5 D \beta^{4} \psi(\eta) \tag{4-100}
\end{equation*}
$$

where now

$$
\begin{equation*}
\psi(\eta)=(1+\eta)^{-1 / 2}\left[1+\frac{1}{2} \eta-\frac{1}{10} \eta^{2}+\frac{2}{35}\left(1-\frac{\delta}{D}\right) \xi\right] \tag{4-101}
\end{equation*}
$$

which is (2-132) with a small second-order correction. If $1+\lambda_{1}$ denotes an average value of $\psi(\eta)$ over the range $0 \leq \beta \leq 1$, then the integration of (4-100) gives

$$
\begin{equation*}
\int_{0}^{1} D \beta^{4} d \beta=\frac{1}{5} \frac{\sqrt{1+\eta_{S}}}{1+\lambda_{1}} \tag{4-102}
\end{equation*}
$$

since $D(1)=1$.
Moments of inertia. The sum of the three principal moments of inertia A, A, and C is, by (2-138) and (4-14)

$$
\begin{equation*}
2 A+C=2 \iiint\left(x^{2}+y^{2}+z^{2}\right) \rho d v=2 \iiint r^{4} \rho d r d \sigma . \tag{4-103}
\end{equation*}
$$

We perform the change of variables discussed in sec. 4.1.2 to get constant limits of integration, using (4-18):

$$
\begin{equation*}
2 A+C=2 \iiint r^{4} \frac{\partial r}{\partial q} \rho(q) d q d \sigma . \tag{4-104}
\end{equation*}
$$

If we expand r by ($4-50$), we immediately see that the first-order terms are removed in view of (2-5), and there remains

$$
\begin{equation*}
2 A+C=8 \pi \int_{0}^{1} \delta \cdot \beta^{4} d \beta+O\left(e^{2}\right) \tag{4-105}
\end{equation*}
$$

in our usual new units. This may be written

$$
\begin{equation*}
C=\frac{8 \pi}{3} \int_{0}^{1} \delta \cdot \beta^{4} d \beta+\frac{2}{3}(C-A) \tag{4-106}
\end{equation*}
$$

The integral has form (2-141) and may be brought by integration by parts into the form (2-147), so that

$$
\begin{equation*}
C=\frac{2}{3} M-\frac{16 \pi}{9} \int_{0}^{1} D \beta^{4} d \beta+\frac{2}{3}(C-A) \tag{4-107}
\end{equation*}
$$

note that we are using units in which, so to speak, $R=1$ and $\rho_{m}=1$. In these units the semimajor axis a is given by $(4-46)$ for $q=1$ as

$$
\begin{equation*}
a=1+\frac{1}{3} e+O\left(e^{2}\right) \tag{4-108}
\end{equation*}
$$

Thus

$$
M a^{2}=M R^{2}\left(1+\frac{2}{3} e\right)=\frac{4 \pi}{3} \rho_{m} R^{5}\left(1+\frac{2}{3} e\right),
$$

which in our units reduces to

$$
\begin{equation*}
M a^{2}=\frac{4 \pi}{3}\left(1+\frac{2}{3} e\right) \tag{4-109}
\end{equation*}
$$

Hence the ratio (2-152),

$$
\begin{equation*}
\frac{J_{2}}{H}=\frac{(C-A) / M a^{2}}{(C-A) / C}=\frac{C}{M a^{2}}=\frac{C}{M R^{2}}\left(1-\frac{2}{3} e\right)=\frac{C}{M}\left(1-\frac{2}{3} e\right) \tag{4-110}
\end{equation*}
$$

becomes, using (4-107),

$$
\begin{equation*}
\frac{J_{2}}{H}=\frac{2}{3}\left(1-\frac{2}{3} e\right)-\frac{4}{3}\left(1-\frac{2}{3} e\right) \int_{0}^{1} D \beta^{4} d \beta+\frac{2}{3} J_{2}+O\left(e^{2}\right) \tag{4-111}
\end{equation*}
$$

noting that in our units,

$$
\begin{equation*}
M=\frac{4}{3} \pi R^{3} \rho_{m}=\frac{4 \pi}{3} \tag{4-112}
\end{equation*}
$$

and

$$
\frac{C-A}{M}=\frac{C-A}{M R^{2}} \doteq \frac{C-A}{M a^{2}}=J_{2}
$$

To the same order we have, by (2-151)

$$
\begin{equation*}
J_{2}=\frac{2}{3} e-\frac{1}{3} m \tag{4-113}
\end{equation*}
$$

since $e=f+O\left(f^{2}\right)$. Thus (4-111) becomes

$$
\begin{equation*}
\frac{J_{2}}{H}=\frac{2}{3}\left[1-\frac{1}{3} m-2\left(1-\frac{2}{3} e\right) \int_{0}^{1} D \beta^{4} d \beta\right] \tag{4-114}
\end{equation*}
$$

from which we eliminate the integral by (4-102).
Hence

$$
\begin{equation*}
\frac{J_{2}}{H}=\frac{2}{3}\left[1-\frac{1}{3} m-\frac{2}{5}\left(1-\frac{2}{3} e\right) \frac{\sqrt{1+\eta_{S}}}{1+\lambda_{1}}\right] \tag{4-115}
\end{equation*}
$$

For η_{S} we have by (4-95) and (4-96) with $\beta=1$,

$$
\begin{equation*}
1+\eta_{S}=\frac{5}{2} \frac{m}{e}-1+\frac{4}{7} e-\frac{6}{7} m+\frac{10}{21} \frac{m^{2}}{e} \tag{4-116}
\end{equation*}
$$

Eqs. (4-115) and (4-116) provide the extension of (2-153) to second order (Jones, 1954).

4.2.4 Darwin's Equation

It is now not difficult to derive a differential equation for the deviation $\kappa=\kappa(\beta)$. We start from the equilibrium condition (4-70) with (4-68). This gives the identity

$$
\begin{equation*}
\left(3 e^{2}-8 \kappa\right) D-6 e S+3 P+\frac{8}{3} Q=0 \tag{4-117}
\end{equation*}
$$

We eliminate S by means of ($4-88$):

$$
\begin{equation*}
S=D e-\frac{1}{3} D \beta \dot{e}+O\left(e^{2}\right) \tag{4-118}
\end{equation*}
$$

obtaining

$$
\begin{equation*}
\left(-3 e^{2}+2 \beta e \dot{e}-8 \kappa\right) D+3 P+\frac{8}{3} Q=0 \tag{4-119}
\end{equation*}
$$

