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Eliminating SI between (4-93) and (4-94) yields 

e (1 + i e - ~ m) = ~ m (1 + ~ e) - 2e (1 + ~ e) 
7 21 2 21 7 

wruch on multiplication by (1 - ~ e + 11 m) gives the desired boundary (or initial) 
condition 

. 5 4 2 6 10 2 
e = - m - 2e + - e - - em + - m 

2 7 7 21 
( 4-95) 

Trus is the second-order equivalent of (2-118). 
As the second boundary condition we may regard the surface flattening / = /(1) 

as given. Furthermore, the ellipticity e must be finite at the earth's center, for ß = o. 

4.2.3 Radau's Transformation 

Following sec. 2.6, we introduce Radau's parameter TJ by 

ß de ß. 
TJ=--=-e . 

e dß e 
(4-96) 

Substituting 
. TJ e =-e 

ß ' 
( 4-97) 

(by (2-123)) into (4-91) and dividing by e gives the second-order Radau equation 

dTJ 2 6 4 ( 6) 
ß dß + TJ - TJ - 6 + 6 D (1 + TJ) ="1 1- D e , (4-98) 

where (4-92) takes the simpler form 

(4-99) 

in view of (4-97). Following the derivation of sec. 2.6 formula by formula, we get n 
(2-134): 

( 4-100) 

where now 

1/J(TJ) = (1 + TJt1/2 [1 + ~ TJ - ~ TJ2 + ~ (1 - ~) e] 
2 10 35 D 

( 4-101) 

which is (2-132) with a small second-order correction. If 1 + >'1 denotes an average 
value of 1/J(TJ) over the range 0 ::; ß ::; 1, then the integration of (4-100) gives 

( 4-102) 

TI 
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since D(l) = 1. 
MomentJ 0/ inertia. The sum of the three principal moments of inertia A, A, and 

Cis, by (2-138) and (4-14) 

(4-103) 

We perform the change of variables discussed in sec. 4.1.2 to get constant limits of 
integration, using (4-18): 

2A + C = 2 III r4
:: p(q)dqdu (4-104) 

If we expand r by (4-50), we immediately see that the first-order terms are removed 
in view of (2-5), and there remains 

1 

2A + C = 87r J S· ß 4 dß + O(e2
) (4-105) 

o 

in our usual new units. This may be written 

1 

87r J 4 2 ( C = - S . ß dß + - C - A) 
3 3 

(4-106) 
o 

The integral has form (2-141) and may be brought by integration by parts into the 
form (2-147), so that 

1 

2 167r J 4 2 
C = 3M - 9 Dß dß + 3 (C - A) ; (4-107) 

o 

note that we are using units in which, so to speak, R = 1 and Pm = 1. In these units 
the semimajor axis a is given by (4-46) for q = 1 as 

(4-108) 

Thus 

M a2 
= M R 2 (1 + ~ e) = 4; PmR6 (1 + ~ e) 

which in our units reduces to 

( 4-109) 

Hence the ratio (2-152), 

(4-110) 
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becomes, using (4-107), 

1 

J2 2 ( 2) 4 ( 2) J 4 2 ( 2) - = - 1 - - e - - 1 - - e Dß dß + - J2 + 0 e 
H 3333 3 ' 

o 

noting that in our units, 
4 3 41T 

M = -1TR Pm =-
3 3 

and 
C-A C-A C-A 
~= MR2 ~ Ma2 =J2 

To the same order we have, by (2-151) 

2 1 
J2 = - e --m 

3 3 

since e = f + O(j2). Thus (4-111) becomes 

from which we eliminate the integral by (4-102). 
Hence 

J2 = ~ [1 _ ! m _ ~ (1 _ ~ e) v'f+71S] 
H 3 3 5 3 1 +).1 

For 1]s we have by (4-95) and (4-96) with ß = 1, 

5 m 4 6 10 m 2 

1 + 1]s = - - - 1 + - e - - m + - -
2 e 7 7 21 e 

(4-111) 

(4-112) 

(4-113) 

(4-114) 

(4-115) 

(4-116) 

Eqs. (4-115) and (4-116) provide the exte~sion of (2-153) to second order (Jones, 
1954). 

4.2.4 Darwin's Equation 

It is now not difficult to derive a differential equation for the deviation K. = K.(ß). We 
start from the equilibrium condition (4-70) with (4-68). This gives the identity 

8 
(3e 2 

- 8K.)D - 6eS + 3P + - Q = 0 
3 

We eliminate S by means of (4-88): 

S = De - ~ Dße + O(e2
) , 

obtaining 

( 4-117) 

(4-118) 

(4-119) 

p 
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