Eq. (4-63) will not be required later, but we shall need (4-64). For future reference we also calculate

$$
\begin{equation*}
A_{4}(\beta)+\frac{24}{35} e A_{2}(\beta)=\frac{8}{35}\left[\left(\frac{3}{2} e^{2}-4 \kappa\right) D-3 e S+\frac{3}{2} P+\frac{4}{3} Q\right] \tag{4-68}
\end{equation*}
$$

For hydrostatic equilibrium, W must be a function of β only, since the surfaces of constant potential are also surfaces of constant density (equisurfaces, cf. sec. 2.5). Thus the identities

$$
\begin{equation*}
A_{2}(\beta)=0, \quad A_{4}(\beta)=0 \tag{4-69}
\end{equation*}
$$

and hence also

$$
\begin{equation*}
A_{4}(\beta)+\frac{24}{35} e A_{2}(\beta)=0 \tag{4-70}
\end{equation*}
$$

must hold for equilibrium figures.

4.2.2 Clairaut's Equation to Second Order

The condition $A_{2}(\beta)=0$ with (4-64) gives immediately

$$
\begin{equation*}
D\left(e+\frac{6}{7} e^{2}\right)-\frac{3}{5} S\left(1+\frac{4}{7} e\right)-\frac{3}{5} T\left(1-\frac{8}{21} e\right)=\frac{1}{2} D \mu\left(1+\frac{20}{21} e\right) . \tag{4-71}
\end{equation*}
$$

Now there comes a trick which will be used several times and which should be kept in mind. To first order (4-71) becomes

$$
\begin{equation*}
D e-\frac{3}{5} S-\frac{3}{5} T=\frac{1}{2} D \mu+O\left(e^{2}\right) \tag{4-72}
\end{equation*}
$$

We multiply this expression by ($-4 e / 7$) (this is why we need it only to first order!) and add it to (4-71), obtaining

$$
\begin{equation*}
D\left(e+\frac{2}{7} e^{2}\right)-\frac{1}{2} m-\frac{3}{5}(S+T)=\frac{4}{21} e(m-3 T) \tag{4-73}
\end{equation*}
$$

where

$$
\begin{equation*}
m=\mu D=\text { const } . \tag{4-74}
\end{equation*}
$$

is the constant (4-67).
Now we must eliminate the two integrals S and T defined by (4-56). This is done by two differentiations, similar but not identical to the procedure in sec. 2.5 .

Differentiating ($4-56$) we easily find

$$
\begin{equation*}
\frac{d D}{d \beta}=-3 \beta^{-1}(D-\delta)+O\left(e^{2}\right) \tag{4-75}
\end{equation*}
$$

similar to (2-113) but with a different normalization (our present D is D / ρ_{m} in sec. 2.5), as well as

$$
\begin{align*}
\frac{d S}{d \beta} & =-5 \beta^{-1} S+\delta\left[5 \beta^{-1}\left(e+\frac{2}{7} e^{2}\right)+\dot{e}+\frac{4}{7} e \dot{e}\right] \tag{4-76}\\
\frac{d T}{d \beta} & =-\delta\left(\dot{e}+\frac{32}{21} e \dot{e}\right) \tag{4-77}
\end{align*}
$$

the dot denoting differentiation:

$$
\begin{equation*}
\dot{e}=\frac{d e}{d \beta} \tag{4-78}
\end{equation*}
$$

This is substituted into the differentiated equation (4-73), noting that many terms cancel, and multiplied by β. The result is

$$
\begin{equation*}
D\left(-3 e-\frac{6}{7} e^{2}+\beta \dot{e}+\frac{4}{7} \beta e \dot{e}\right)+3 S=\frac{4}{21} \beta \dot{e}(m-3 T) \tag{4-79}
\end{equation*}
$$

We multiply by β^{5} (to eliminate the integral $\beta^{5} S$ by differentiation!) and differentiate. After division by β^{4} and simplification we thus get

$$
\begin{align*}
\beta^{2} \ddot{e} & {\left[D\left(1+\frac{4}{7} e\right)-\frac{4}{21} m+\frac{4}{7} T\right]+} \\
& +6 \beta \dot{e}\left[\delta\left(1+\frac{4}{7} e\right)-\frac{4}{21} m+\frac{4}{7} T-\frac{2}{63} \beta^{2} \dot{D} \dot{e}\right]+ \\
& +2 \beta e \dot{D}\left(1+\frac{2}{7} e\right)=0 \tag{4-80}
\end{align*}
$$

In the process of simplification, the relation (4-75)

$$
\begin{equation*}
\dot{D}=-3 \beta^{-1}(D-\delta) \tag{4-81}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
D-\delta=-\frac{1}{3} \beta \dot{D}, \quad D+\frac{1}{3} \beta \dot{D}=\delta \tag{4-82}
\end{equation*}
$$

have played an essential role. The first-order approximation is sufficient since D is always multiplied by $O(e)$.

Now comes a variant of the trick applied at the very beginning of the present section: to first order, $(4-80)$ reduces to

$$
\begin{equation*}
C(\beta) \equiv \beta^{2} \ddot{e} D+6 \beta \dot{e} \delta+2 \beta e \dot{D}=0 \tag{4-83}
\end{equation*}
$$

which, of course, is nothing else than the first-order Clairaut equation (2-114); note (4-82)! The first order is sufficient here for the same reason as above.

We write (4-80) in the form

$$
\begin{equation*}
C(\beta)+K(\beta)=0 \tag{4-84}
\end{equation*}
$$

$C(\beta)$ denoting Clairaut's equation (4-83) and $K(\beta)$ the remaining second-order terms in $(4-80)$. By (4-83) we get

$$
\begin{equation*}
\beta^{2} \ddot{e} D=-6 \beta \dot{e} \delta-2 \beta e \dot{D} \tag{4-85}
\end{equation*}
$$

which permits us to eliminate \ddot{e} in the second-order $K(\beta)$. The result is

$$
\begin{equation*}
K(\beta)=-\frac{4}{7} \beta \dot{D} e^{2}-2 \beta \frac{\dot{D}}{D}(e+\beta \dot{e})\left(-\frac{4}{21} m+\frac{4}{7} T\right)-\frac{4}{21} \beta^{3} \dot{D} \dot{e}^{2} \tag{4-86}
\end{equation*}
$$

To eliminate T, we apply our trick again: (4-72) gives

$$
\begin{equation*}
T=\frac{5}{3} D e-S-\frac{5}{6} m \tag{4-87}
\end{equation*}
$$

and (4-79) reduces to first order to

$$
\begin{equation*}
-3 D e+D \beta \dot{e}+3 S=0 \tag{4-88}
\end{equation*}
$$

which we solve for S and substitute in (4-87), obtaining

$$
\begin{equation*}
T=\frac{2}{3} D e+\frac{1}{3} D \beta \dot{e}-\frac{5}{6} m \tag{4-89}
\end{equation*}
$$

to first order, which is sufficient for substitution in (4-86). Thus, after some laborious but straightforward computations we find simply

$$
\begin{equation*}
K(\beta)=\frac{4}{7}(D-\delta)\left[7 e^{2}+6 \beta e \dot{e}+3 \beta^{2} \dot{e}^{2}-7 \mu(e+\beta \dot{e})\right] \tag{4-90}
\end{equation*}
$$

so that (4-84), with (4-83) and (4-81), becomes

$$
\begin{equation*}
\beta^{2} \ddot{e}+6 \beta \frac{\delta}{D} \dot{e}-6\left(1-\frac{\delta}{D}\right) e=\frac{4}{7}\left(1-\frac{\delta}{D}\right) e \xi \tag{4-91}
\end{equation*}
$$

where, following (Jones, 1954), we have put

$$
\begin{equation*}
\xi=7 \mu\left(1+\beta \frac{\dot{e}}{e}\right)-3 e\left(1+\beta \frac{\dot{e}}{e}\right)^{2}-4 e \tag{4-92}
\end{equation*}
$$

Eq. (4-91) is the desired Clairaut equation to second order. It is solved iteratively, first solving Clairaut's equation (4-91) with right-hand side zero and then using $e(\beta) \doteq f(\beta)$ so obtained to compute the correction term (4-92) and hence the righthand side of (4-91). Then the full equation (4-91) can be solved. Numerical methods for solving differential equations (Runge-Kutta etc.) are standard.

Boundary conditions. Two are needed. One is obtained by putting $\beta=1, D=1$, $T=0$ in (4-79):

$$
\begin{equation*}
-3 e-\frac{6}{7} e^{2}+\dot{e}+\frac{4}{7} e \dot{e}+3 S_{1}-\frac{4}{21} \dot{e} m=0 \tag{4-93}
\end{equation*}
$$

Now $S_{1}=S(1)$ is found from (4-71) with $\beta=1$:

$$
e+\frac{6}{7} e^{2}-\frac{3}{5} S_{1}\left(1+\frac{4}{7} e\right)=\frac{1}{2} m\left(1+\frac{20}{21} e\right)
$$

We multiply by $\left(1-\frac{4}{7} e\right)$ to obtain $(S=O(e)!)$

$$
\begin{equation*}
e+\frac{2}{7} e^{2}-\frac{3}{5} S_{1}=\frac{1}{2} m\left(1+\frac{8}{21} e\right) \tag{4-94}
\end{equation*}
$$

Eliminating S_{1} between (4-93) and (4-94) yields

$$
\dot{e}\left(1+\frac{4}{7} e-\frac{4}{21} m\right)=\frac{5}{2} m\left(1+\frac{8}{21} e\right)-2 e\left(1+\frac{2}{7} e\right)
$$

which on multiplication by ($1-\frac{4}{7} e+\frac{4}{21} m$) gives the desired boundary (or initial) condition

$$
\begin{equation*}
\dot{e}=\frac{5}{2} m-2 e+\frac{4}{7} e^{2}-\frac{6}{7} e m+\frac{10}{21} m^{2} \tag{4-95}
\end{equation*}
$$

This is the second-order equivalent of (2-118).
As the second boundary condition we may regard the surface flattening $f=f(1)$ as given. Furthermore, the ellipticity e must be finite at the earth's center, for $\beta=0$.

4.2.3 Radau's Transformation

Following sec. 2.6, we introduce Radau's parameter η by

$$
\begin{equation*}
\eta=\frac{\beta}{e} \frac{d e}{d \beta}=\frac{\beta}{e} \dot{e} \tag{4-96}
\end{equation*}
$$

Substituting

$$
\begin{equation*}
\dot{e}=\frac{\eta}{\beta} e, \quad \ddot{e}=\left(\frac{1}{\beta} \frac{d \eta}{d \beta}+\frac{\eta^{2}-\eta}{\beta^{2}}\right) e \tag{4-97}
\end{equation*}
$$

(by (2-123)) into (4-91) and dividing by e gives the second-order Radau equation

$$
\begin{equation*}
\beta \frac{d \eta}{d \beta}+\eta^{2}-\eta-6+6 \frac{\delta}{D}(1+\eta)=\frac{4}{7}\left(1-\frac{\delta}{D}\right) \xi \tag{4-98}
\end{equation*}
$$

where (4-92) takes the simpler form

$$
\begin{equation*}
\xi=7 \mu(1+\eta)-3 e(1+\eta)^{2}-4 e \tag{4-99}
\end{equation*}
$$

in view of (4-97). Following the derivation of sec. 2.6 formula by formula, we get (2-134):

$$
\begin{equation*}
\frac{d}{d \beta}\left(D \beta^{5} \sqrt{1+\eta}\right)=5 D \beta^{4} \psi(\eta) \tag{4-100}
\end{equation*}
$$

where now

$$
\begin{equation*}
\psi(\eta)=(1+\eta)^{-1 / 2}\left[1+\frac{1}{2} \eta-\frac{1}{10} \eta^{2}+\frac{2}{35}\left(1-\frac{\delta}{D}\right) \xi\right] \tag{4-101}
\end{equation*}
$$

which is (2-132) with a small second-order correction. If $1+\lambda_{1}$ denotes an average value of $\psi(\eta)$ over the range $0 \leq \beta \leq 1$, then the integration of (4-100) gives

$$
\begin{equation*}
\int_{0}^{1} D \beta^{4} d \beta=\frac{1}{5} \frac{\sqrt{1+\eta_{S}}}{1+\lambda_{1}} \tag{4-102}
\end{equation*}
$$

