For P_{2}^{2} we have the formula

$$
\begin{equation*}
\left[P_{2}(t)\right]^{2}=\frac{1}{5}+\frac{2}{7} P_{2}(t)+\frac{18}{35} P_{4}(t) \tag{4-37}
\end{equation*}
$$

which expresses the square of the Legendre polynomial P_{2} as a linear combination of P_{2} and P_{4}. This formula, which can be verified immediately by substituting the defining expressions ($1-33$), will play a basic role in our second-order theory.

Since we are considering $L_{2}(q)$, we need only the coefficient of P_{2} (all other terms are removed by orthogonality), so that (4-36) gives

$$
\begin{equation*}
\ln r=\cdots+\left(\epsilon_{2}-\frac{1}{7} \epsilon_{2}^{2}\right) P_{2}(\cos \theta)+(\cdots) P_{4}(\cos \theta) \tag{4-38}
\end{equation*}
$$

$(-1 / 7)$ in (4-38) results as the product of $(-1 / 2)$ in $(4-36)$ and $(2 / 7)$ in (4-37).
We take into account ($4-38$) and substitute (4-33) in the second line of (4-29). Orthogonality and ($4-25$) with $n=2$ then give immediately

$$
\begin{equation*}
L_{2}(q)=\frac{4 \pi G}{5} \int_{q}^{R} \rho(q) \frac{d}{d q}\left(\epsilon_{2}-\frac{1}{7} \epsilon_{2}^{2}\right) d q \tag{4-39}
\end{equation*}
$$

4.1.4 Computation of $K_{n}(q)$ and $L_{n}(q)$

For this purpose we need (4-24) and (4-30). For $n=0$ we have by raising (4-11) to the third power:

$$
r^{3}=q^{3}\left(1+3 \epsilon_{2} P_{2}+3 \epsilon_{4} P_{4}+3 \epsilon_{2}^{2} P_{2}^{2}\right),
$$

to $O\left(f^{2}\right)$ and omitting the primes. For P_{2}^{2} we use (4-37) to get

$$
\begin{equation*}
A_{0}(q)=1+3 \epsilon_{2}^{2} \cdot \frac{1}{5}=1+\frac{3}{5} \epsilon_{2}^{2} \tag{4-40}
\end{equation*}
$$

A_{2} and A_{4} are removed by orthogonality, so that we do not need them. For $n=2$ we have

$$
r^{5}=q^{5}\left(1+5 \epsilon_{2} P_{2}+5 \epsilon_{4} P_{4}+10 \epsilon_{2}^{2} P_{2}^{2}\right),
$$

so the only required term in $(4-24)$ is

$$
\begin{equation*}
B_{2}=5 \epsilon_{2}+10 \epsilon_{2}^{2} \cdot \frac{2}{7}=5\left(\epsilon_{2}+\frac{4}{7} \epsilon_{2}^{2}\right) \tag{4-41}
\end{equation*}
$$

For $n=4$ we similarly find

$$
\begin{align*}
& r^{7}=q^{7}\left(1+7 \epsilon_{2} P_{2}+7 \epsilon_{4} P_{4}+21 \epsilon_{2}^{2} P_{2}^{2}\right), \\
& C_{4}=7 \epsilon_{4}+21 \epsilon_{2}^{2} \cdot \frac{18}{35}=7\left(\epsilon_{4}+\frac{54}{35} \epsilon_{2}^{2}\right) \tag{4-42}
\end{align*}
$$

In (4-30) we have for $n=0$ and 4 :

$$
\begin{align*}
r^{2} & =q^{2}\left(1+2 \epsilon_{2} P_{2}+2 \epsilon_{4} P_{4}+\epsilon_{2}^{2} P_{2}^{2}\right) \\
D_{0} & =1+\frac{1}{5} \epsilon_{2}^{2} \tag{4-43}\\
r^{-2} & =q^{-2}\left(1-2 \epsilon_{2} P_{2}-2 \epsilon_{4} P_{4}+3 \epsilon_{2}^{2} P_{2}^{2}\right) \\
F_{4} & =-2\left(\epsilon_{4}-\frac{27}{35} \epsilon_{2}^{2}\right) \tag{4-44}
\end{align*}
$$

Finally we introduce the flattening f. In (4-3) we put

$$
\begin{align*}
\cos ^{2} \theta & =\frac{1}{3}+\frac{2}{3} P_{2}(\cos \theta) \\
\sin ^{2} 2 \theta & =\frac{8}{15}+\frac{8}{21} P_{2}-\frac{32}{35} P_{4} \tag{4-45}
\end{align*}
$$

which is directly verified by inserting (1-33).
Substituting into (4-3) and putting $P_{2}=P_{4}=0$ (the average of P_{n} is zero!) we get the mean radius

$$
\begin{equation*}
q=a\left(1-\frac{1}{3} f-\frac{1}{5} f^{2}-\frac{8}{15} \kappa\right) \tag{4-46}
\end{equation*}
$$

This is solved for a and substituted into (4-3), together with (4-45). The result is

$$
\begin{equation*}
r=q\left[1-\frac{2}{3}\left(f+\frac{23}{42} f^{2}+\frac{4}{7} \kappa\right) P_{2}+\frac{4}{35}\left(3 f^{2}+8 \kappa\right) P_{4}\right] \tag{4-47}
\end{equation*}
$$

with $P_{n}=P_{n}(\cos \theta)$, up to $O\left(f^{2}\right)$.
Following de Sitter, we introduce, instead of f, the auxiliary quantity

$$
\begin{equation*}
e=f-\frac{5}{42} f^{2}+\frac{4}{7} \kappa \tag{4-48}
\end{equation*}
$$

which we shall call ellipticity. (The ellipticity e is not to be confused with the first excentricity (1-55)!) To our approximation we may put

$$
\begin{equation*}
e^{2} \doteq f^{2} \tag{4-49}
\end{equation*}
$$

note also that $\kappa=O\left(f^{2}\right)=O\left(e^{2}\right)$.
In terms of $e,(4-47)$ simplifies to

$$
\begin{equation*}
r=q\left[1-\frac{2}{3}\left(e+\frac{2}{3} e^{2}\right) P_{2}(\cos \theta)+\frac{4}{35}\left(3 e^{2}+8 \kappa\right) P_{4}(\cos \theta)\right] \tag{4-50}
\end{equation*}
$$

We notice that the second-order coefficient no longer contains the deviation κ : remember that κ represents the deviation of our spheroid from the ellipsoid (cf. Fig. 4.1), which holds for the internal equidensity surfaces $(q<R)$ as well as for the bounding surface $q=R$.

The comparison between (4-11) and (4-50) immediately gives

$$
\begin{equation*}
\epsilon_{2}=-\frac{2}{3}\left(e+\frac{2}{3} e^{2}\right), \quad \epsilon_{4}=\frac{4}{35}\left(3 e^{2}+8 \kappa\right) \tag{4-51}
\end{equation*}
$$

This is substituted into the expressions (4-40) through (4-44), whence (4-26) and $(4-32)$, as well as $(4-39)$, become

$$
\begin{align*}
& K_{0}(q)=\frac{4 \pi G}{3} \int_{0}^{q} \rho \frac{d}{d q}\left[\left(1+\frac{4}{15} e^{2}\right) q^{3}\right] d q \\
& L_{0}(q)=2 \pi G \int_{q}^{R} \rho \frac{d}{d q}\left[\left(1+\frac{4}{45} e^{2}\right) q^{2}\right] d q \\
& K_{2}(q)=-\frac{8 \pi G}{15} \int_{0}^{q} \rho \frac{d}{d q}\left[\left(e+\frac{2}{7} e^{2}\right) q^{5}\right] d q \tag{4-52}\\
& L_{2}(q)=-\frac{8 \pi G}{15} \int_{q}^{R} \rho \frac{d}{d q}\left(e+\frac{16}{21} e^{2}\right) d q \\
& K_{4}(q)=\frac{16 \pi G}{9} \int_{0}^{q} \rho \frac{d}{d q}\left[\left(\frac{9}{35} e^{2}+\frac{8}{35} \kappa\right) q^{7}\right] d q \\
& L_{4}(q)=\frac{4 \pi G}{9} \int_{q}^{R} \rho \frac{d}{d q}\left(\frac{32}{35} \kappa q^{-2}\right) d q
\end{align*}
$$

Note that $\rho=\rho(q), e=e(q)$, and $\kappa=\kappa(q)$.

4.1.5 Gravitational Potential at P

The potential V consists of V_{i} and V_{e} according to (4-6). The first part of the trick was to compute V_{i} at a point P_{e} (Fig. 4.3) and the potential V_{e} at a point P_{i} (Fig. 4.4) for which the critical series $(4-8)$ and (4-27) always converge. Thus we have satisfied the desideratum of Tisserand (Tisserand, 1891, p. 317; Wavre, 1932, p. 68) of working with convergent series only.

The result were the finite (truncated!) expressions (4-10) and (4-31); finite because the terms with $n>4$ would already be $O\left(f^{4}\right)$ which we have agreed to neglect. These formulas represent functions which are harmonic and hence analytic in the "empty" regions E_{P} for V_{i} and I_{P} for V_{e}; see Figs. 4.3 and 4.4. Being analytic, these expressions hold throughout E_{P} for V_{i} and I_{P} for V_{e}; in view of the continuity of the potential they must hold also at the point P itself! This transition $P_{e} \rightarrow P, P_{i} \rightarrow P$ forms the second part of the trick.

This simple argument shows that we may use the expressions (4-10) and (4-31) also for P, so that the total gravitational potential V is their sum:

