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Lichtenstein determines the geometry from the physics. Also, for Lichtenstein, the 
spherical configuration is the starting point, whereas for Wavre it is a singularity 
(O/O)! 

Wavre's approach is also described in the books (Baeschlin, 1948) and (Leder
steger, 1969), whereas the basic book in English, (Jardetzky, 1958), does not present 
it, although it outlines an approximation method also due to Wavre ("proCf!de uni
forme") which intends, by an ingenious but complicated trick, to circumvent the 
convergence problem of certain series of spherical harmonies. We shall not treat this 
here because the author believes that this problem can be tackled in a much simpler 
way as we shall see in sec. 4.1.5. 

3.3 Stationary Potential Energy 

In various domains of physics, equilibrium is associated with a stationary (maximum 
or minimum, depending on the sign) value of potential energy. Liapunov and Poin
eare have treated homogeneous equilibrium figur es from this point of view; a modern 
approach is found in the book (Macke, 1967, p. 543). Macke's method has been ge
neralized to heterogeneous (terrestrial) equilibrium figures (Macke et al., 1964; Voss, 
1965, 1966). This approach is interesting because it reflects the typical thinking and 
mathematical methods of modern theoretical physics. 

3.3.1 Potential Energy 

The gravitational energy of a material particle of mass m in a field of potential V is 
mV, and that of a system of particles thus 

E = l:miV; (3-93) 

the sign (+ or -) is conventional. 
This holds for an ezternal potential field V. If the field is produced by the mutual 

gravitational attraction of the particles themselves: 

(j i i) (3-94) 

then (3-93) gives 
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Eaeh term oecurs twice, however (interchange i and j), so that we must divide by 2, 
obtaining 

Ev = ~ G l: l: mimj (j i i) (3-95) 
2 i j lij 

cf. also (Kellogg, 1929, pp. 79-81) or (Poincare, 1902, pp. 7-8). 
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The continuous analogue of (3-95) is 

E v = ! G rrr rrr p(x)p(x') dvdv' 
2 JJJ JJJ Ilx - x'll 

v v 

(3-96) 

with obvious notations: x, x' position vectors; v volume of the body; dv, dv' volume 
elements; and 1 = Ilx - x'll. Another form of (3-96) is 

(3-97) 

where V is the usual gravitational potential. Comparing with (3-93) note the factor 
1/2, reflecting the fact that E v is produced by an internal field created by the mass 
elements dm = pdv themselves. 

For the centrifugal part we have 

E ifl = Lm;<P; = JJJ <ppdv , (3-98) 

in agreement with (3-93), since the centrifugal potential <P acts as an ezternal field. 
The potential energy of the gravity potential W = V + <P thus is the sum of (3-97) 

and (3-98): 

E w = J G V + <p) pdv , (3-99) 

using only a simple integral sign for notational convenience. 

3.3.2 Dirac's and Heaviside's Functions 

We recall the basic definition of Dirac '3 delta function (cf. Moritz, 1980, pp. 28-30): 

5(x) 0 
5(0) = (X) 

00 

except for x = 0 , 
in such a way that 

J 5(x)dx.= 1 

(3-100) 

(3-101) 

It is a somewhat strange "function" but is extremely useful and popular in physics. 
Its integral is Heaviside's step function: 

'" 
B(x) = J 5(x')dx' . 

From (3-100) and (3-101) it immediately follows that 

B ( x) = {O for x < 0 , 
1 for x> 0 

For B(O) we may take the value 1/2. 
From (3-102) there follows the basic relation 

5(x) = dB(x) = B'(x) 
dx 

(3-102) 

(3-103) 

(3-104) 


	BCS2_0087
	BCS2_0088

