2.7 Moments of Inertia

The moment of inertia of a body around an axis is given by the well-known formula

$$
\begin{equation*}
J=\iiint p^{2} d m \tag{2-137}
\end{equation*}
$$

where p denotes the distance of the mass element $d m$ from the axis under consideration.

For the polar moment of inertia $J=C$, around the z-axis (mean axis of rotation) we thus have with $d m=\rho d v$:

$$
\begin{equation*}
C=\iiint\left(x^{2}+y^{2}\right) \rho d v \tag{2-138}
\end{equation*}
$$

since $p^{2}=x^{2}+y^{2}$ in this case.
Neglecting the flattening, we integrate over the sphere $r=R$, with volume element

$$
\begin{equation*}
d v=r^{2} \sin \theta d r d \theta d \lambda \tag{2-139}
\end{equation*}
$$

in spherical coordinates, with $x^{2}+y^{2}=r^{2} \sin ^{2} \theta$,

$$
\begin{equation*}
C=\int_{\lambda=0}^{2 \pi} \int_{\theta=0}^{\pi} \int_{r=0}^{R} r^{4} \sin ^{3} \theta \rho(r) d r d \theta d \lambda \tag{2-140}
\end{equation*}
$$

This is the product of three integrals:

$$
\begin{aligned}
& \int_{0}^{2 \pi} d \lambda=2 \pi \\
& \int_{0}^{\pi} \sin ^{3} \theta d \theta=\frac{4}{3} \\
& \int_{0}^{R} \rho(r) r^{4} d r
\end{aligned}
$$

whence

$$
\begin{equation*}
C=\frac{8 \pi}{3} \int_{0}^{R} \rho(r) r^{4} d r \tag{2-141}
\end{equation*}
$$

This formula is nice but not very practical since it requires the knowledge of $\rho(r)$.
The essential feature of Radau's approximation (2-135) is that it permits us to transform (2-141) into a form that is independent of an explicit density law $\rho(r)$. By (2-128) we have

$$
\begin{equation*}
\rho=D+\frac{1}{3} q D^{\prime}, \quad D^{\prime}=d D / d q \tag{2-142}
\end{equation*}
$$

so that (2-141) becomes, on replacing r by the mean radius q (the spherical configuration is the mean configuration for the ellipsoidal stratification!)

$$
\begin{equation*}
C=\frac{8 \pi}{9} \int_{0}^{R}\left(3 D q^{4}+D^{\prime} q^{5}\right) d q \tag{2-143}
\end{equation*}
$$

Integration by parts gives, for the infinite integral,

$$
\begin{equation*}
\int D^{\prime} q^{5} d q=\int \frac{d D}{d q} q^{5} d q=D q^{5}-5 \int D q^{4} d q \tag{2-144}
\end{equation*}
$$

and for the definite integral

$$
\begin{equation*}
\int_{0}^{R} D^{\prime} q^{5} d q=\rho_{m} R^{5}-5 \int_{0}^{R} D q^{4} d q \tag{2-145}
\end{equation*}
$$

where the earth's mean density is expressed by (2-116):

$$
\begin{equation*}
\rho_{m}=\frac{M}{4 \pi R^{3} / 3} . \tag{2-146}
\end{equation*}
$$

Thus (2-143) becomes

$$
\begin{equation*}
C=\frac{2}{3} M R^{2}-\frac{16 \pi}{9} \int_{0}^{R} D q^{4} d q \tag{2-147}
\end{equation*}
$$

Now comes the crucial point: the integral can be evaluated by Radau's formula (2-135)! This is the reason why we have introduced, apparently out of the blue sky, the function (2-125). In fact, the integration of (2-135) gives

$$
\begin{equation*}
\int_{0}^{R} D q^{4} d q=\frac{1}{5} \rho_{m} R^{5} \sqrt{1+\eta_{S}} \tag{2-148}
\end{equation*}
$$

considering that for $q=R$ we have $D=\rho_{m}$ and $\eta=\eta_{s}$ as given by (2-146) and ($2-136$). In view of ($2-148$), eq. ($2-147$) thus becomes

$$
\begin{equation*}
C=\frac{2}{3} M R^{2}\left(1-\frac{2}{5} \sqrt{1+\eta_{S}}\right) . \tag{2-149}
\end{equation*}
$$

This equation is independent of the density law $\rho(q)$ and uses only the known surface value η_{s} ! To be sure, it is based on the following presuppositions and approximations:

1. The earth is in hydrostatic equilibrium.
2. Second-order terms $O\left(f^{2}\right)$ can be neglected.
3. Radau's function $\psi(\eta)=1$, see eq. (2-133).

Now the dynamical ellipticity (1-85)

$$
\begin{equation*}
H=\frac{C-A}{C} \tag{2-150}
\end{equation*}
$$

is very accurately known from astronomical precession. From the theory of the external field we have (2-17),

$$
\begin{equation*}
J_{2}=\frac{C-A}{M a^{2}} \doteq \frac{C-A}{M R^{2}}=\frac{2}{3} f-\frac{1}{3} m \tag{2-151}
\end{equation*}
$$

disregarding $O\left(f^{2}\right)$ as usual, whose numerical value is given by (1-77). Thus

$$
\begin{equation*}
\frac{J_{2}}{H}=\frac{(C-A) / M R^{2}}{(C-A) / C}=\frac{C}{M R^{2}}=\frac{2}{3}\left(1-\frac{2}{5} \sqrt{1+\eta_{S}}\right) \tag{2-152}
\end{equation*}
$$

or, with (2-136),

$$
\begin{equation*}
\frac{J_{2}}{H}=\frac{2}{3}\left(1-\frac{2}{5} \sqrt{\frac{5 m}{2 f}-1}\right) \tag{2-153}
\end{equation*}
$$

Substituting the numerical values (1-77), (1-79), (1-83) and (1-85) we get an inconsistency which, when confirmed by a more precise (second-order) theory, would show that the earth is not in hydrostatic equlibrium, cf. sec. 1.1.

Substituting (2-151) we get the relation

$$
\begin{equation*}
f-\frac{m}{2}=H\left(1-\frac{2}{5} \sqrt{\frac{5 m}{2 f}-1}\right) \tag{2-154}
\end{equation*}
$$

which can be solved for f and permits the determination of f from H without knowing J_{2} but assuming hydrostatic equilibrium.

Since f can now be determined from J_{2} much more directly, without needing the hypothesis of hydrostatic equilibrium, this possibility is of historic interest only.

It remains of fundamental geophysical importance, however, whether (2-153), or rather a more accurate version, holds for the real earth or not. This will be considered later (sec. 4.2.5).

Mathematically speaking, an equation such as (2-153) is an (approximate) first integral of Clairaut's equation (2-114). The complete solution of this equation would, of course, be a representation of f as a function of q : $f=f(q), \quad 0 \leq q \leq R$. Nevertheless it is extremely surprising that Radau could get as far as (2-153) without needing the density law $\rho=\rho(q)$.

