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2.7 Moments of Inertia 

The moment of inertia of a body around an axis is given by the well-known formula 

(2-137) 

where p denotes the distance of the mass element dm from the axis under considera
tion. 

For the polar moment of inertia J = C, around the z-axis (mean axis of rotation) 
we thus have with dm = pdv: 

(2-138) 

since p2 = x 2 + y2 in trus case. 
Neglecting the flattening, we integrate over the sphere r = R, with volume element 

dv = r 2 sin OdrdOd)" 

in spherical coordinates, with x 2 + y2 = r 2 sin2 0, 

211'" '7f R 

C = J J J r 4 sin3 Op(r )drdOd>' 
A=09=Or=0 

This is the product of three integrals: 

whence 

2,,-

J d>" = 271" 
o 

j sin3 OdO = ~ 
o 
R J p(r)r4 dr 

o 

R 

C = 8; J p(r )r 4dr 
o 

(2-139) 

(2-140) 

(2-141) 

This formula is nice bu t not very practical since it requires the knowledge of p( r). 
The eßsential feature of Radau's approximation (2-135) is that it permits us to 

transforril. (2-141) into a form that is independent of an explicit density law p(r). By 
(2-128) we have 

1 , 
P = D + -qD , 

3 
D' = dD/dq , (2-142) 
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so that (2-141) becomes, on replacing r by the mean radius q (the spherical configu
ration is the mean configuration for the ellipsoidal stratification!) 

R 

871" J C = 9 (3Dl + D'q6)dq (2-143) 
o 

Integration by parts gives, for the infinite integral, 

(2-144) 

and for the definite integral 

R R 

J D'ldq = Pm R6 - 5 J Dq
4
dq , (2-145) 

o 0 

where the earth's mean density is expressed by (2-116): 

M 
Pm = 471"R3/3 . (2-146) 

Thus (2-143) becomes 

(2-147) 

Now comes the crucial point: the integral can be evaluated by Radau's formula 
(2-135)! This is the reason why we have introduced, apparentIy out of the blue sky, 
the function (2-125). In fact, the integration of (2-135) gives 

R 

J 4 1 6 ~ 
Dq dq = 5" Pm R vI + TJs , (2-148) 

o 

considering that for q = R we have D = Pm and TJ = TJs as given by (2-146) and 
(2-136). In view of (2-148), eq. (2-147) thus becomes 

(2-149) 

This equation is independent of the density Iaw p( q) and uses only the known 
surface value TJs! To be sure, it is based on the following presuppositions and approx
imations: 

1. The earth is in hydrostatic equilibrium. 
2. Second-order terms O(P) can be neglected. 
3. Radau's function 'ifJ(TJ) = I, see eq. (2-133). 
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Now the dynamical ellipticity (1-85) 

C-A 
H=-

C 

51 

(2-150) 

is very accurately known !rom astronomical precession. Prom the theory of the ex
ternal field we have (2-17), 

C-A C-A 2 1 
J2 = M a2 == M R2 = 3 f - 3 m (2-151) 

disregarding O(j2) as usual, whose numerical value is given by (1-77). Thus 

J2 (C-A)/MR2 C 2 ( 2~) 
H= (C-A)/C = MR2=3 l- syl+71S (2-152) 

or, with (2-136), 

(2-153) 

Substituting the numerical values (1-77), (1-79), (1-83) and (1-85) we get an 
inconsistency which, when confirmed by a more precise (second-order) theory, would 
show that the earth is not in hydrostatic equlibrium, cf. sec. 1.1. 

Substituting (2-151) we get the relation 

m ( 2~) f-z:=H l- sV21- 1 (2-154) 

which can be solved for fand permits the determination of f !rom H without knowing 
J2 but assuming hydrostatic equilibrium. 

Since f can now be determined !rom J 2 much more directly, without needing the 
hypothesis of hydrostatic equilibrium, this possibility is of historie interest oruy. 

It remains of fundamental geophysical importance, however, whether (2-153), or 
rather a more accurate version, holds for the real earth or not. This will be considered 
later (sec. 4.2.5). 

Mathematically speaking, an equation such as (2-153) is an (approximate) jir3t 
integralof Clairaut's equation (2-114). The complete solution of this equation would, 
of course, be a representation of f as a function of q: f = f(q), o:s q :S R. 
Nevertheless it is extremely surprising that Radau could get as far as (2-153) without 
needing the density law p = p( q). 
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