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2.7 Moments of Inertia

The moment of inertia of a body around an axis is given by the well-known formula

J =///p2dm , (2-137)

where p denotes the distance of the mass element dm from the axis under considera-
tion.

For the polar moment of inertia J = C, around the z-axis (mean axis of rotation)
we thus have with dm = pdv:

0= ///(22 +y%)pdv (2-138)

since p? = z? + y? in this case.
Neglecting the flattening, we integrate over the sphere r = R, with volume element

dv = r? sin §drdfd\ (2-139)
in spherical coordinates, with 22 4+ y? = r2sin® 6,

6=0r

R
/ sin®Op(r)drddd) . (2-140)
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This is the product of three integrals:
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whence
8 7
(G = ?/p(r)r"dr . (2-141)
0

This formula is nice but not very practical since it requires the knowledge of p(r).

The essential feature of Radau’s approximation (2-135) is that it permits us to
transform (2-141) into a form that is independent of an explicit density law p(r). By
(2-128) we have

1
p=D+ 3 gD ; D'=dD/dq, (2-142)
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so that (2-141) becomes, on replacing r by the mean radius ¢ (the spherical configu-
ration is the mean configuration for the ellipsoidal stratification!)

R
= ?’r / 3Dg¢* + D'¢°)dg . (2-143)
0

Integration by parts gives, for the infinite integral,

dD
/D'qsdq Z/d_q 8dg = Dq" — 5/Dq4dq : (2-144)
and for the definite integral
R R
/D'qsdq = PR — 5/Dq4dq s (2-145)
0 0
where the earth’s mean density is expressed by (2-116):
M
il 2-146
Pm = 4 R%/3 e
Thus (2-143) becomes
R
0= MR’ 13” / Dg'dg . (2-147)
0

Now comes the crucial point: the integral can be evaluated by Radau’s formula
(2-135)! This is the reason why we have introduced, apparently out of the blue sky,
the function (2-125). In fact, the integration of (2-135) gives

= :
1
AL gl 5 ot
0/Dq dg=cpmB\1+ms (2-148)

considering that for ¢ = R we have D = p,, and n = 75 as given by (2-146) and
(2-136). In view of (2-148), eq. (2-147) thus becomes

2 e
Cl= §M.R2 (1 = g 1 == T]s) . (2—'149)

This equation is independent of the density law p(g) and uses only the known
surface value 75! To be sure, it is based on the following presuppositions and approx-

imations:
1. The earth is in hydrostatic equilibrium.

2. Second-order terms O(f?) can be neglected.
3. Radau’s function %(n) = 1, see eq. (2-133).
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Now the dynamical ellipticity (1-85)

== (2-150)

is very accurately known from astronomical precession. From the theory of the ex-
ternal field we have (2-17),

G-A . O-& 2, 1
o= T wm "3 3™ o)

disregarding O(f?) as usual, whose numerical value is given by (1-77). Thus

J, (C-A)/MR* C 2 2 ’
o (c—-4)/C _MR2—3(1_5V1+’75) (2-152)

or, with (2-136),
Jz 2 2 5m
5_5(1—51/2f—1> . (2-153)

Substituting the numerical values (1-77), (1-79), (1-83) and (1-85) we get an
inconsistency which, when confirmed by a more precise (second-order) theory, would
show that the earth is not in hydrostatic equlibrium, cf. sec. 1.1.

Substituting (2-151) we get the relation

m 2 [5m
f_EZH(l—E E_l) = (2-154)

which can be solved for f and permits the determination of f from H without knowing
J; but assuming hydrostatic equilibrium.

Since f can now be determined from J; much more directly, without needing the
hypothesis of hydrostatic equilibrium, this possibility is of historic interest only.

It remains of fundamental geophysical importance, however, whether (2-153), or
rather a more accurate version, holds for the real earth or not. This will be considered
later (sec. 4.2.5).

Mathematically speaking, an equation such as (2-153) is an (approximate) first
integral of Clairaut’s equation (2-114). The complete solution of this equation would,
of course, be a representation of f as a function of ¢: f = f(q), 0 < ¢ < R.

Nevertheless it is extremely surprising that Radau could get as far as (2-153) without
needing the density law p = p(g).
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