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2.7 Moments of Inertia 

The moment of inertia of a body around an axis is given by the well-known formula 

(2-137) 

where p denotes the distance of the mass element dm from the axis under considera­
tion. 

For the polar moment of inertia J = C, around the z-axis (mean axis of rotation) 
we thus have with dm = pdv: 

(2-138) 

since p2 = x 2 + y2 in trus case. 
Neglecting the flattening, we integrate over the sphere r = R, with volume element 

dv = r 2 sin OdrdOd)" 

in spherical coordinates, with x 2 + y2 = r 2 sin2 0, 

211'" '7f R 

C = J J J r 4 sin3 Op(r )drdOd>' 
A=09=Or=0 

This is the product of three integrals: 

whence 

2,,-

J d>" = 271" 
o 

j sin3 OdO = ~ 
o 
R J p(r)r4 dr 

o 

R 

C = 8; J p(r )r 4dr 
o 

(2-139) 

(2-140) 

(2-141) 

This formula is nice bu t not very practical since it requires the knowledge of p( r). 
The eßsential feature of Radau's approximation (2-135) is that it permits us to 

transforril. (2-141) into a form that is independent of an explicit density law p(r). By 
(2-128) we have 

1 , 
P = D + -qD , 

3 
D' = dD/dq , (2-142) 
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so that (2-141) becomes, on replacing r by the mean radius q (the spherical configu­
ration is the mean configuration for the ellipsoidal stratification!) 

R 

871" J C = 9 (3Dl + D'q6)dq (2-143) 
o 

Integration by parts gives, for the infinite integral, 

(2-144) 

and for the definite integral 

R R 

J D'ldq = Pm R6 - 5 J Dq
4
dq , (2-145) 

o 0 

where the earth's mean density is expressed by (2-116): 

M 
Pm = 471"R3/3 . (2-146) 

Thus (2-143) becomes 

(2-147) 

Now comes the crucial point: the integral can be evaluated by Radau's formula 
(2-135)! This is the reason why we have introduced, apparentIy out of the blue sky, 
the function (2-125). In fact, the integration of (2-135) gives 

R 

J 4 1 6 ~ 
Dq dq = 5" Pm R vI + TJs , (2-148) 

o 

considering that for q = R we have D = Pm and TJ = TJs as given by (2-146) and 
(2-136). In view of (2-148), eq. (2-147) thus becomes 

(2-149) 

This equation is independent of the density Iaw p( q) and uses only the known 
surface value TJs! To be sure, it is based on the following presuppositions and approx­
imations: 

1. The earth is in hydrostatic equilibrium. 
2. Second-order terms O(P) can be neglected. 
3. Radau's function 'ifJ(TJ) = I, see eq. (2-133). 
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Now the dynamical ellipticity (1-85) 

C-A 
H=-­

C 

51 

(2-150) 

is very accurately known !rom astronomical precession. Prom the theory of the ex­
ternal field we have (2-17), 

C-A C-A 2 1 
J2 = M a2 == M R2 = 3 f - 3 m (2-151) 

disregarding O(j2) as usual, whose numerical value is given by (1-77). Thus 

J2 (C-A)/MR2 C 2 ( 2~) 
H= (C-A)/C = MR2=3 l- syl+71S (2-152) 

or, with (2-136), 

(2-153) 

Substituting the numerical values (1-77), (1-79), (1-83) and (1-85) we get an 
inconsistency which, when confirmed by a more precise (second-order) theory, would 
show that the earth is not in hydrostatic equlibrium, cf. sec. 1.1. 

Substituting (2-151) we get the relation 

m ( 2~) f-z:=H l- sV21- 1 (2-154) 

which can be solved for fand permits the determination of f !rom H without knowing 
J2 but assuming hydrostatic equilibrium. 

Since f can now be determined !rom J 2 much more directly, without needing the 
hypothesis of hydrostatic equilibrium, this possibility is of historie interest oruy. 

It remains of fundamental geophysical importance, however, whether (2-153), or 
rather a more accurate version, holds for the real earth or not. This will be considered 
later (sec. 4.2.5). 

Mathematically speaking, an equation such as (2-153) is an (approximate) jir3t 
integralof Clairaut's equation (2-114). The complete solution of this equation would, 
of course, be a representation of f as a function of q: f = f(q), o:s q :S R. 
Nevertheless it is extremely surprising that Radau could get as far as (2-153) without 
needing the density law p = p( q). 
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