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2.5 Hydrostatic Equilibrium: Clairaut's Equation 

The equation of motion for an ideal fluid is very simple: 

pi = pg - gradp (2-95) 

i = d2x/ dt2 is the acceleration of a fluid particle (the second derivative of the position 
vector x with respect to time t), pis the density, g is the force (per unit mass) acting 
on the particle, which in our case is gravity, and p denotes the pressure. This equation 
can be found in any textbook on theoretical physics in general and on hydrodynamies 
in particulari cf. also (Moritz and MueIler, 1987, p. 204). 

For hydrostatic equilibrium there is no motion, hence i = 0, and generally (1-8) 
holds. Thus (2-95) reduces to 

o = pgradW - gradp (2-96) 

Now we form the inner product with the vector dx = [dx, dy, dz], obtaining, e.g., 

gradW· dx = W",dx + Wydy + W.dz = dW , (2-97) 

which is nothing else than the total differential of the potential W. Thus (2-96) is 
equivalent to 

(2-98) 

Hence dp = 0 implies dW = 0 and vice versa: the surfaces of constant potential 
(dW = 0) coincide with the surfaces of constant pressure (dp = 0). Hence . 

p = p(W) 

is a function of W only, and so is, by (2-98) 

p= ~ =p(W) 
dW 

(2-99) 

(2-100) 

Thus also the surfaces of constant density coincide with the surfaces of constant poten
tial. For hydrostatic equilibrium, the surfaces of constant density p are also surfaces 
of constant potential Wand surfaces of constant pressure Pi we shall call them simply TI 
equisurfaces. Furthermore, p is assumed not to decrease towards the center. 

Internal potential of an equilibrium ellipsoid. To get the gravity potential W, we by 
must add the centrifugal potential <I> to the gravitational potential V given by (2-93). 
For <I> we have the expression (2-8), which holds for the interior as weIl as for the 
surface, 

(2-101) 

In (2-93) we express r by the ellipsoidal equation (2-82) and neglect O(j2). Thus we 
only need 

1 1 [2 ] -= - 1+-fP2(COSO) 
r q 3 

(2-102) 
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in the first term on the right-hand side of (2-93); in the other small terms we may 
simply replace r by q as we did in (2-101). The result is 

W V + cf> = 471'G [~ I pql2 dq' + ! pq' dq' + ~~~] + 

+ 471'GP2(COS 8) [~L jq pq'2dq' - ~ jq pd(Jq'6) -
3 q 0 15q 0 

R ] 
2 df W2q2 

__ q2jp_dq'_ -- = W(q, 8) 
15 dq' 1271'G 

q 

(2-103) 

Now the ellipsoidal surfaces q = const. are by definition (eq. (2-88)) also surfaces 
of constant density p and, as we have just seen, for hydrostatic equilibrium also 
surfaces of constant potential and hence equi8urface8 as defined above. Therefore, for 
q = const. there must also be W = const., which i8 only p088ible if (2-103) doe8 not 

depend on 8! Thus the bracket which is a factor of P2 ( cos 8) must be zero, and there 
remains 

[ 

q R 22] 
W = 471'G ~ j pq,2 dq' + j pq' dq' + ~ 

q 1271'G 
o q 

(2-104) 

wruch clearly has the desired form W = W(q). 
Derivation of Clairaut'8 equation. As we have just seen, the factor P2 ( cos 8) in 

(2-103) must be zero. This gives, on multiplying by (-15/2), 

-5L jq pq'2dq' + ~ jq P d(fq'6) dq' + 
q q3 dq' 

o 0 

R 2 
2j df , 5w 2 +q p- dq + -- q = 0 

dq' 871'G 
q 

(2-105) 

Trus equation must hold identically for all q ~ R. 
We shall now try to eliminate the integrals by differentiation. First we multiply 

by qS: 

q q d(f '6) R d 2 
- 5fq2 J pq'2dq' + J p+ dq' + l J p /' dq' + ::G l = 0 

o 0 q q q 
(2-106) 

Now we differentiate with respect to q, wruch is possible since (2-106) is an identity 
in q. For instance, 

i:.. Jq 
d(fq'6) d ' _ d(fq6) _ 0 _ d(fq6) 

d Pd' q-Pd -Pd q 0 q q q 
(2-107) 
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since the integrand vanishes at q = 0, and 

~ /R P df dq' = 0 _ p df = _p df 
dq dq' dq dq 

q 

(2-108) 

since p, and hence the integrand, vanishes at the boundary ellipsoid. (More precisely, 
we could extend the integral (1-1) for the potential to a surface S enclosing the 
boundary surface S since p = 0 between Sand Sj and hence we could extend the 
integral to R + € instead of R, and at R + €, pis certainly zero.) 

In this way, the differentiation of (2-106) gives 

( 

2 df ) /q '2' 4 d(fq6) -5 q - + 2qf pq dq - 5fq p + p-- -
dq dq 

o 
R 2 

6 df 4 / df , 25w 4 -q p- +5q p-dq + --q = 0 
dq dq' 87rG 

q 

It is clear that p = p( q'), f = f( q') inside the integrals and p = p( q), f = f( q) outside. 
In view of 

P d(fq6) = p (l df + 5q4f) 
dq dq 

which cancels with two other terms, there remains simply 

( ) 

q R 2 
df " df, 25w 4 

- 5 q2 dq + 2qf / pq 2dq + 5q4 / p dq' dq + 87rG q = 0 
o q 

(2-109) 

Now we introduce the mean density D by (2-61), with q instead of r: 

q 

() 3/'2' D = D q = 3' pq dq , 
q 0 

(2-110) 

so that (2-109) becomes, on multiplying by (-3/(5 q4)), 

(
q df + 2f ) D _ 3 JR P df dq' _ 15w

2 
= 0 

dq dq' 87rG 
q , 

(2-111) 

Now we may differentiate again with respect to q: 

( qd
2f 

+3df)D+ (qd
f 

+2 f ) dD + 3p d
f 

=0 
dq2 dq dq dq dq 

(2-112) 

Differentiating (2-110) we find 

dD 9 Jq 

'2 , 3 2 - = - - pq dq + - , pq 
dq q4 q3 

o 

at 
p, 

~ 
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or 
dD 3 
Tq=-q(D-p) (2-113) 

This is substituted into (2-112), and after some easy algebra we get 

(2-114) 

This is the famous differential equation 01 Clairaut (1743), which is basic for the 
whole theory of terrestrial equilibrium figures. What follows in this book on equili
brium figures, may be considered variations on this theme by Clairaut. Eq. (2-114) 
will be derived in various alternative (and very instructive) ways, and, being valid 
only to a first-order approximation, it will be corrected by terms of second order in 
the flattening. 

Eq. (2-114) thus is a homogeneous ordinary differential equation of second order 
for 1 = I(q) (O:S q :S R) (it is clear that the expression "second order" is used here 
in a quite different sense than in the sentence before!). It must be completed by two 
initial or boundary conditions, e.g., by prescribing fand df / dq at the surface q = R. 

In fact, df /dq can be computed as follows. Eq. (2-111) gives for q = R: 

and with 

(
R

df + 2 / ) D = 15w
2 

dq 87l'G 

M 
D = 47l'R3/3 = Pm 

which, since q = R, gives the mean density of the whole earth, we get 

or, in view of (2-14), 

Thus 

at the earth's surface. 

df 5 w 2 R 3 

R-+2f= ---
dq 2 GM 

df 5 
R-+2f =-m 

dq 2 

dl 
dq 

The numerical values (1-79) and (1-83) indicate that 

df > 0 
dq 

(2-115) 

(2-116) 

(2-117) 

(2-118) 

(2-119) 

at the earth's surface, and it may be shown (cf. Jeffreys, 1976, p . 198; Wavre, 1932, 
p. 98) that (2-119) also holds in the earth's interior. Thus the fiattening of the 
equiJurfaces decreases with decreasing q, that is with increasing depth. 
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This holds for the real earth. If the earth were homogeneous, then obviously D = p, 
so that Clairaut's equation re duces to 

(2-120) 

which has the solution df / dq = 0 or f = const. Thus the equisurfaces of homogeneous 
ellipsoidal equilibrium figures are geometrically similar ellipsoids (all have the same 
flattening i). This was derived here 80S an approximation of first order in f, but may 
be shown to be rigorously valid. This is the case of the Maclaurin ellipsoid to be 
considered in sec. 5.4. 

Finally we mention that, instead of solving the differential equation (2-114) with 
the appropriate boundary conditions, we could also try to solve the original equivalent 
integro-differential equations (2-105) or (2-111) iteratively. This approach may have 
numerical advantages (Denis, 1989), but from the conceptual and analytical point of 
view, which we are emphasizing throughout this book, the elegant and mathema.tically 
simple and transparent equation of Clairaut remains fundamental. 

Our further considerations will, therefore, follow the classical approach, submitting 
Clairaut's equation to an ingenious transformation due to Radau. 

E:r:ercise. Wavre (1932, p . 96) gives the elegant integro-differential equation 

: (Di) = 3
6 

] f(q')q'6dp 
q q q'=O 

where for differentiable p 
d - dp(q') d ' 
p- dq' q 

Show its equivalence to Clairaut's equation (2-114) by differentiation. 

2.6 Radau's Transformation 

Radau (1885) introduces the parameter 

q df dlnf 
TJ=--=--

f dq dlnq 
(2-121) 

In terms of Radau 's parameter we thus have 

df = 1J.. f 
dq q 

(2-122) 

and differentiation gives 

(2-123) 

TI 
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