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For the internal potential (r < R) we proceed in exactly the same way, substituting 

1 00 r" 
- = L -P. (cos7jJ) 
I "=0 R"+I " 

(2-77) 

instead of (2-72), into (2-71) and obtaining the internal potential v = Vi. Again, 
orthogonality eliminates all terms except n = 2, and (2-74) again applies. The result 

15 

87r 2 ( ) 
Vi = --Gpfr P2 cosB 

15 
(2-78) 

In order to apply (2-65), we must use for the inner spherical potential the expression 
(2-43), obtaining 

(2-79) 

as the formula for the internal potential of a homogeneous ellipsoid. In both formulas 
(2-76) and (2-79), terms of O(j2) are neglected. These two formulas will serve as a 
basis for computing the potential of a heterogeneous (stratified) ellipsoid. 

2.4 Heterogeneous Ellipsoid 

Homogeneotl.3 ßhell. As apreparation, consider a thin ellipsoidal shell (of infinitesi
mal truckness), bounded by two ellipsoids EI and E 2 , witrun wruch the density pis 
constant. 

In the same way as we have assigned, in Fig. 2.3, to an ellipsoid E its mean sphere 
S (of radius R, wruch deflnes R as mean radius for E), we can assign such spheres 
to El and E2 ; let q be the mean radius of the inner ellipsoid E l and q + dq the 
mean radius of the outer ellipsoid E2 (remember they are infinitesimally elose to each 
other). Similarly let f denote the fiattening of EI and f + df that of E 2 , and let f be 
a function of q, 

so that 

f=f(q) , 

df 
df = -dq 

dq 

Then the equation of EI is, by (2-64), 

r = q [1- ~ fP2(cos8)] 

and that of E 2 , 

(2-80) 

(2-81) 

(2-82) 

r = (q + dq) [1 - ~ (f + df)P2 (cos 8)] (2-83) 

keeping in mind that fand df depend on q through (2-80) and (2-81). 
Now comes the important step. In order to determine the potential of the shell, 

consider the homogeneous solid ellipsoid bounded by E 2 , of constant density p, and 
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FIGURE 2.4: Ellipsoidal shell 

remove the inner solid ellipsoid bounded by E1 ; the result obviously is the ellipsoidal 
shell of Fig. 2.4. Thus the potential of the shell is the difference of the potentials of two 
homogeneous ellipsoids! This is why we have needed the theory of the homogeneous 
ellipsoid (sec. 2.3). 

Thus, for the extern al potential, at some point p. (Fig. 2.4), we have 

(2-84) 

since everything depends on q. Now V. is given by (2-76), with R replaced by q, so 
that 

471" d [l 2 q6 ] dy' = -Gp- - - - - fP2(cos8) dq . 
3 dq r 5 r 3 

(2-85) 

Note that f, through (2-80), depends on q, but r, being the radius vector of p., is to 
be considered constant with respect to the differentiation. Thus, with 

(2- 85) becomes 

dy' = 471"Gp [q2 dq _ ~ P2(cos8) d(lf)] 
r 15 r 3 

(2-86) 

as the external potential of our thin ellipsoidal shell. 
Similarly (2-79) gives 

471" d [3 1 2 ] dV; = - Gp-d - q2 - - r 2 
- - fr 2 P2( cos 8) dq 

3 q 2 2 5 

or 

(2-87) 
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for the internal potential of the shell at a point Pi (Fig. 2.4) of radius vector r, keeping 
(2-81) in mind. 

HeterogeneouJ ellipJoid. These formulas are used to build up the expressions for 
the potential of a heterogeneous ellipsoid. The heterogeneous ellipsoid (our ellipsoids 
are always rotationally symmetrie) is bounded by the ellipsoidal surface with q = R. 
It has an ellipsoidal stratification, and let the set of ellipsoidal surfaces of constant 
density be labeled by the parameter q (the mean radius) just defined, so that the 
density 

p = p(q) (2-88) 

is also a function of q (only), where 

(2-89) 

Then any surface of constant density has an equation of form (2-82); since, by def
inition, q is constant along such a surface, p is also constant on it by (2-88) as it 
should. (The fact that q is constant on a surface of constant density, of course, does 
not imply that the surface is a sphere!) Note that q is the r of sec . 2.3; and already 
earlier (sec. 1.5) we have used r for the mean radius; we write q only when there is a 
danger of confusion. 

The density p may even be considered constant between two infinitesimally elose 
surfaces (2-82) and (2-83), or between El and E 2 • Thus the heterogeneous ellipsoid 
is built up from infinitely many infinitesimally thin homogeneous shells of Fig. 2.4, 
which means integration with respect to q from 0 to R. As a matter of fact, p varies 
from shell to shell according to (2-88). 

Ezternal potential. The integration of (2-86) thus gives 

R 

V. = V.(r, B) = J dV. = 
q=O 

R R 
471'G / 2d 871'G P2( cos B) / d(f 6) 
-r- pq q - 15 r 3 p q (2-90) 

o q=O 

In the first term on the right-hand side we have 

R 

471' / pldq = M (2-91 ) 
o 

the total mass enclosed by the sphere q = R, as (2-58) shows.Thus 

R 

v: - GM 871'G P2(cosB) / ( 6) .---- pdfq 
r 15 r 3 

(2-92) 
q=O 

The integral being a constant, trus expression very clearly is of form (1-39) for the 
expansion of a rotationally sy=etric potential into aseries of spherical harmonies, 
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truncated at n = 2. This also shows that M is the total mass enclosed by the ellipsoid, 
which thus is seen to be equal to the mass of the auxiliary mean sphere of radius R. 

This is quite normal since any ellipsoid E and its associated mean sphere S (of 
radius q) enclose the same volume by the very definition (2-82), in view of (2-53) for 
n = 2: the mean deviation between E and S is zero. This holds for any ellipsoid of 
constant density, q < R, as weil as for the boundary ellipsoid q = R, which we are 
considering in (2-92). 

Internal potential. We shall use a similar artifice (Fig. 2.5) as for the sphere 

FIGURE 2.5: lliustrating the potential at an interior point P 

(Fig. 2.2), considering the ellipsoid (= ellipsoidal surface) of constant density Ep 

passing through the interior point P at which the potential V = Vi is to be computed. 
The ellipsoid E p is characterized by its value q (the radius of the corresponding mean 
sphere); along E p , the value of q is, of course, constant as we have already remarked. 
The equation of E p is (2- 82); rand () are shown in Fig. 2.5. 

Again we shall build up the potential by sumrning (integrating) the contributi
ons of the infinitesimal sheils bounded by ellipsoids of constant density as shown in 
Fig. 2.4. These contributions are gjven by (2-86) and (2-87). Since q has been res er
ved for E p (Fig. 2.5), we shall denote the integration variable by q', similarly as we 
did for the sphere, cf. (2-47). For the interior of E p , i.e. for q' < q, we take (2-86); 
for the shell between Ep and E, i.e. for q < q' < R, we take (2-87): Pis external for 
the region inside E p (being just on its extern al boundary Ep ) and internal for the 
shell. Thus we get 
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Vi V(r, 0) = 

47rG J9 (I) 12 1 87rG P2( cos 0) J9 d(f 16) -- pqqdq--- p q + 
r 15 r 3 

o 0 

R R 

J ( I) 1 1 87rG 2p ( 0) J df d 1 + 47rG p q q dq - 15 r 2 COS P dq' q 
9 q 

(2-93) 

As a matter of fact, 

p = p(ql) f = f(q') (2-94) 

in the second and fourth integral. As a check note that, for q = R, (2-93) reduces to 
(2-90) as it should; obviously the somewhat clumsy notation ql for q when used as 
integration variable, was not needed in (2-90). 

Eq. (2-93) gives the potential at an interior point P if r is expressed in terms of 
q and 0 by (2-82), cf. again Fig. 2.5. The derivation (which goes back to Laplace) is 
standard (cf. Jeffreys, 1976, sec. 4.03), but nevertheless the attentive reader may have 
noticed that we are not playing the game quite fair. In fact, working with aseries 
such as (2-77), we must presuppose that P lies inside the sphere of radius R since 
r < R. However, we are using the result (2-78) inside the ellipsoid and, as Fig. 2.3 
shows, a point may welllie inside the ellipsoid but outside the sphere. 

The easy ans wer is that, having derived the basic expressions of sec. 2.3 by regar
ding the "extra material" of Fig. 2.3 as being compressed as a surface layer on the 
sphere, so that, for the present purposes, the ellipsoid can formally be identified with 
the sphere. This answer is not so bad as it looks, but it is not very convincing either. 
In the past, several mathematicians from Liapunov to Wavre have worried about this 
problem and tried to solve it. Later, in Chapter 4, we shall attempt to give a simple 
but quite rigorous argument; in the meantime the reader is asked to take (2-93) on 
belief. 

Aremark on infinitesimals. Physicists and other appliers of mathematics have 
always worked with differentials basically in the sense of Leibnitz, as "infinitely small 
quantities". This naive approach is eminently successful but has long been frowned 
upon by mathematicians, wbo demanded a rigorous lirniting process in each instance, 
which is possible in principle but usually disproportionally laborious. Legitimately, 
we ma.y interpret differential formulas such as (2-86) as approximations for small but 
finite dq, which become better and better the more dq decreases. 

Qnly recently, "actual infinitesimals" or real infinitely small quantities, very much 
in the sense of Leibnitz, have been introduced in mathematics in a rigorous way. 
This is the subject of "nonstandard analysis" whicb nowadays enjoys a fair amount 
of popularity. A very readable introduction is, e.g., (Keisler, 1976). 

What counts for the applier is that differentials and infinitesimals can indeed be 
used in a mathematically respectable fashion, whatever be their interpretation. 
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