Chapter 2

The Equilibrium Figure of the
Earth: Basic Theory

2.1 External Ellipsoidal Field to First-Order Ap-
proximation

Let us first consider the ellipsoid of revolution as a level surface; this is a good
approximation to the earth as we have seen in Chapter 1. In view of the smallness
of the flattening f(=0.003), we shall in this chapter disregard f* and other higher
powers of the flattening. This is the first-order theory also considered by Clairaut
(1743). For present accuracies, a second-order theory, accurate up to f2, is required.
This will be done in Chapter 4. The first-order theory, however, is much simpler and
very beautiful and instructive and will, therefore, be treated first.
Equation of the ellipsoid. To first order, (1-73) reduces to

7= a(l — fcos®8) . (2-1)

It will be useful to introduce spherical harmonics. By eq. (1-33), the Legendre poly-
nomial P, is given by

3 1
Py(cos ) = 3 cos” § — el (2-2)

so that (2-1) may be transformed into
1 2
rza[l—gf—gfpz(cosﬂ] ; (2-3)
The mean earth radius R, cf. (1-86), is the average of r over the unit sphere:

R:j—W[/rda:a@—%f) (2-4)

since the integral over P, is zero:

Pydo = PyPydo =0 (2-5)
J[ Pedo = |

o o
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by (1-33) and (1-41), in view of the orthogonality of spherical harmonics. Thus (2-3)
becomes

= 8 [1 - ngz(cos 0)] : (2-6)

note that we are consistently neglecting f2! This equation expresses, for the ellipsoid,
the radius vector 7 as a function of 6 (and A). The longitude A does not occur explicitly
because our ellipsoid is a surface of revolution; for the same reason, (2-6) does not
contain tesseral harmonics which depend explicitly on A (sec. 1.3).

The fact that only the even polynomial P, enters into (2-6), expresses equatorial
symmetry (symmetry with respect to the equatorial plane), which would be distroyed
by the odd polynomials P;, Ps,...; cf. (1-33).

Gravity potential. The gravitational potential may be expressed by the rotationally
symmetric zonal expansion (1-39), retaining only J,:

_GM

1)

|4

a2
1-— = JyPy(cos )| . (2-7)

In fact, (1-77) shows that J, is of order f; Js is missing because of equatorial sym-
metry, and J, is already of order of JZ or of f? and must therefore be neglected (for
numerical values of J; cf. sec. 6.4 later in the book).

For the centrifugal potential we have by (1-6), (1-26) and (2-2):

® = %wz(mz +y%) = %wz'r2 sin?@ = %wzrz [1 — Py(cos®)] . (2-8)

The sum of (2-7) and (2-8) gives the gravitational potential W:

GM

T

a? 1
W = 1-— = J2Py(cos 8)| + §w2r2 (1 — Py(cos )] . (2-9)

Now we note that .
J, = O(f) ) 6= O(f) ) (2_10)

where, as we have already remarked, the symbol O(f) reads “on the order of f”,
denoting quantities of order f. The first equation has been explained above; the
second will be justified later; cf. eq. (2-14). Thus, in keeping with our approximation
and neglecting O(f?), we can put a?/r2 =1 in (2-7) because it already is multiplied
by J, = O(f). For the same reason we may put 72 = R? in (2-8). Thus (2-9) becomes

W = %(1 — LB) -+ %sz"(l -P) , (2-11)
G
abbreviating
Py(cos8) =P, . (2-12)
By (2_6)’
c=s(1+3sm) rou
r R ks H



r

B0 =,

2.1 EXTERNAL FIELD TO FIRST ORDER 27

(binomial series!). This is substituted into (2-11), the multiplications are carried out,
and O(f?) is neglected. The result may be written

GM 1 2 1
o [1 + §m+ (Ef —Jy— §m) P,(cos@)] . (2-13)
where
w*R®  w?d®
m= Eﬁ — W’ = 0.00345 (2—14)

by (1-83), which is indeed of order f and thus justifies putting w? = O(f) as in (2-10).
If our ellipsoid is to be a level surface, W must be constant on it:

W=w, (2-15)
so that the coefficient of P;(cos ) in (2-13) must vanish. This gives
GM 1
W = —R— (1+§m) =W, (2—16)

and 5 ;
gf—Jg'—ng:() )

which yields an extremely important relation between f and J,:

2 j |
Jp=—f—= =
or, inversely,
3 1
=—Jy+ = " —
- | 2V =+ 2 m (2-18)

This is not only a beautiful relation between geometrical (f) and physical (J, m)
quantities, but is the key formula for the direct determination of the flattening f
from the satellite-determined coefficient J,. Of course, practically a higher-order
approximation is required, but nothing shows the essential structure of the problem
more clearly than (2-18).

Finally we note that, using the ellipsoid as a model for the geoid, we simply
have identified the actual potential W with the normal potential U, in keeping with
Clairaut’s approximation; cf. sec. 1.2.

Gravity. The radial component of gravity g is

ow
ar b
the f-component is
1ow
r 80 °
so that
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9=\\or 2\98) " or (3=18)
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since (8W/86)? is of second order. The differentiation of (2-9) gives

oW 1 a? 2
—87 =GM (—ﬁ +3 17 Jy Pz) eI ng’l‘(l = Pz) . (2—20)
Now we substitute, by (2-6),
1 1 4
ﬁ:ﬁ(lﬁ-ngz)'l‘o(fz) j (2-21)

in the other small terms, 7 and a may simply be replaced by R. This gives, also
considering (2-14) and (2-17),

GM 2 2 5
I=m [l TR + (—5 I+ gm) Py(cos 0)] ’ (2-22)
For the equator, § = 90°, P, = —1, this gives equatorial gravity
GM 1 3

(we do not distinguish here between gravity g and normal gravity v!); for the pole,
6 =0°, P, =1, we have polar gravity

GM 2
B=m (1=3f+m) (2-24)

so that for the gravity flattening (1-84) we get

f‘:uz—f+gm y (2-25)

€

This gives another beautiful formula
- » 5
f+r7= 2™ (2-26)

due to Clairaut, which relates the geometrical flattening f and the gravity flatte-
ning f* in a surprisingly simple way. There is a physical interpretation also for the
dimensionless quantity m: by (2-14) and (2-23) we have, disregarding O(f?),

2 2 : :
w’R a _ centrifugal force at equator ; (2-27)

S GM/R* ~ ~. gravity at equator
Then (2-22) may be transformed, using (2-2), to
=" [1 + (—f + gm) cos® a] (2-28)

or, by (2-26),
9="7(1+ fcos’6) (2-29)
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This equation could also have been derived as a first-order approximation to So-
migliana’s formula (1-23); similarly there is a rigorous, though less simple, equivalent
of Clairaut’s formula (2-26) for the level ellipsoid; cf. (Heiskanen and Moritz, 1967,
secs. 2-8 and 2-10) and eq. (5-69) later in sec. 5.2.

If we had a uniform coverage of the earth by gravity measurements (unfortunately
we don’t), then we could try to fit a formula of type (2-29) (to a higher approximation)

to these measurements, obtaining f*. Then the flattening f could be derived by (2-26)
from

f=-f+ gm 3 (2-30)

This is a complete gravimetric analogue to (2-18): it permits to determine the flatte-

ning f from gravity flattening f*, whereas (2-18) allows the computation of f from
the satellite-determined J,.

2.2 Internal Field of a Stratified Sphere

First-order ellipsoidal formulas, as we have seen and will see, are basically spherical
formulas with corrections on the order of the flattening f. In this sense, the sphere
serves as a reference for the ellipsoid, and it will be useful to study the gravitational
field of a stratified sphere, such as shown by Fig. 1.5.
The ezternal gravitational field of any spherically symmetric distribution is given
simply by
GM

»
It is formally equal to the potential of a mass point, regardless of the inner structure
of the body as long as it is spherically symmetric. This is seen immediately on writing
the general spherical-harmonic expansion (1-36), with (1-47), in Laplace’s form

VvV =

(2-31)

O X050 b3 (SR Wl N)
V= “2:‘3 s o b 2_)1 = (2-32)

Of the Laplacian harmonics Y,(6, ), only Y; is constant; cf. (1-33). In the case of
spherical symmetry, all functions Y,(6, \) must be missing except the constant Y,
which, by (1-3), is seen to be equal to GM; this proves (2-31).

Gravity outside the sphere is then simply

8V dv _GM

S i e i

Note that if we consider the sphere as a zero-degree approximation to the ellipsoid, it
must be nonrotating since w? = O(f) by (2-10), so that f = 0 implies w = 0. Thus,
to this primitive approximation, W = V, and gravity coincides with gravitational
attraction. The spherical symmetry of (2-33) is obvious. Egs. (2-31) and (2-33) are
valid down to the surface of the sphere.
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