Chapter 2

The Equilibrium Figure of the Earth: Basic Theory

2.1 External Ellipsoidal Field to First-Order Approximation

Let us first consider the ellipsoid of revolution as a level surface; this is a good approximation to the earth as we have seen in Chapter 1. In view of the smallness of the flattening $f(\doteq 0.003)$, we shall in this chapter disregard f^{2} and other higher powers of the flattening. This is the first-order theory also considered by Clairaut (1743). For present accuracies, a second-order theory, accurate up to f^{2}, is required. This will be done in Chapter 4. The first-order theory, however, is much simpler and very beautiful and instructive and will, therefore, be treated first.

Equation of the ellipsoid. To first order, (1-73) reduces to

$$
\begin{equation*}
r=a\left(1-f \cos ^{2} \theta\right) \tag{2-1}
\end{equation*}
$$

It will be useful to introduce spherical harmonics. By eq. (1-33), the Legendre polynomial P_{2} is given by

$$
\begin{equation*}
P_{2}(\cos \theta)=\frac{3}{2} \cos ^{2} \theta-\frac{1}{2} \tag{2-2}
\end{equation*}
$$

so that (2-1) may be transformed into

$$
\begin{equation*}
r=a\left[1-\frac{1}{3} f-\frac{2}{3} f P_{2}(\cos \theta)\right] \tag{2-3}
\end{equation*}
$$

The mean earth radius R, cf. (1-86), is the average of r over the unit sphere:

$$
\begin{equation*}
R=\frac{1}{4 \pi} \iint_{\sigma} r d \sigma=a\left(1-\frac{1}{3} f\right) \tag{2-4}
\end{equation*}
$$

since the integral over P_{2} is zero:

$$
\begin{equation*}
\iint_{\sigma} P_{2} d \sigma=\iint_{\sigma} P_{0} P_{2} d \sigma=0 \tag{2-5}
\end{equation*}
$$

by (1-33) and (1-41), in view of the orthogonality of spherical harmonics. Thus (2-3) becomes

$$
\begin{equation*}
r=R\left[1-\frac{2}{3} f P_{2}(\cos \theta)\right] \tag{2-6}
\end{equation*}
$$

note that we are consistently neglecting $f^{2}!$ This equation expresses, for the ellipsoid, the radius vector r as a function of θ (and λ). The longitude λ does not occur explicitly because our ellipsoid is a surface of revolution; for the same reason, (2-6) does not contain tesseral harmonics which depend explicitly on λ (sec. 1.3).

The fact that only the even polynomial P_{2} enters into (2-6), expresses equatorial symmetry (symmetry with respect to the equatorial plane), which would be distroyed by the odd polynomials P_{1}, P_{3}, \ldots; cf. (1-33).

Gravity potential. The gravitational potential may be expressed by the rotationally symmetric zonal expansion (1-39), retaining only J_{2} :

$$
\begin{equation*}
V=\frac{G M}{r}\left[1-\frac{a^{2}}{r^{2}} J_{2} P_{2}(\cos \theta)\right] \tag{2-7}
\end{equation*}
$$

In fact, (1-77) shows that J_{2} is of order $f ; J_{3}$ is missing because of equatorial symmetry, and J_{4} is already of order of J_{2}^{2} or of f^{2} and must therefore be neglected (for numerical values of $J_{4} \mathrm{cf}$. sec. 6.4 later in the book).

For the centrifugal potential we have by (1-6), (1-26) and (2-2):

$$
\begin{equation*}
\Phi=\frac{1}{2} \omega^{2}\left(x^{2}+y^{2}\right)=\frac{1}{2} \omega^{2} r^{2} \sin ^{2} \theta=\frac{1}{3} \omega^{2} r^{2}\left[1-P_{2}(\cos \theta)\right] \tag{2-8}
\end{equation*}
$$

The sum of $(2-7)$ and (2-8) gives the gravitational potential W :

$$
\begin{equation*}
W=\frac{G M}{r}\left[1-\frac{a^{2}}{r^{2}} J_{2} P_{2}(\cos \theta)\right]+\frac{1}{3} \omega^{2} r^{2}\left[1-P_{2}(\cos \theta)\right] \tag{2-9}
\end{equation*}
$$

Now we note that

$$
\begin{equation*}
J_{2}=O(f) \quad, \quad \omega^{2}=O(f) \tag{2-10}
\end{equation*}
$$

where, as we have already remarked, the symbol $O(f)$ reads "on the order of f ", denoting quantities of order f. The first equation has been explained above; the second will be justified later; cf. eq. (2-14). Thus, in keeping with our approximation and neglecting $O\left(f^{2}\right)$, we can put $a^{2} / r^{2} \doteq 1$ in $(2-7)$ because it already is multiplied by $J_{2}=O(f)$. For the same reason we may put $r^{2} \doteq R^{2}$ in (2-8). Thus (2-9) becomes

$$
\begin{equation*}
W=\frac{G M}{r}\left(1-J_{2} P_{2}\right)+\frac{1}{3} \omega^{2} R^{2}\left(1-P_{2}\right) \tag{2-11}
\end{equation*}
$$

abbreviating

$$
\begin{equation*}
P_{2}(\cos \theta)=P_{2} \tag{2-12}
\end{equation*}
$$

By (2-6),

$$
\frac{1}{r}=\frac{1}{R}\left(1+\frac{2}{3} f P_{2}\right)+O\left(f^{2}\right)
$$

(binomial series!). This is substituted into (2-11), the multiplications are carried out, and $O\left(f^{2}\right)$ is neglected. The result may be written

$$
\begin{equation*}
W=\frac{G M}{R}\left[1+\frac{1}{3} m+\left(\frac{2}{3} f-J_{2}-\frac{1}{3} m\right) P_{2}(\cos \theta)\right] \tag{2-13}
\end{equation*}
$$

where

$$
\begin{equation*}
m=\frac{\omega^{2} R^{3}}{G M}=\frac{\omega^{2} a^{2} b}{G M}=0.00345 \tag{2-14}
\end{equation*}
$$

by (1-83), which is indeed of order f and thus justifies putting $\omega^{2}=O(f)$ as in (2-10).
If our ellipsoid is to be a level surface, W must be constant on it:

$$
\begin{equation*}
W=W_{0}, \tag{2-15}
\end{equation*}
$$

so that the coefficient of $P_{2}(\cos \theta)$ in $(2-13)$ must vanish. This gives

$$
\begin{equation*}
W=\frac{G M}{R}\left(1+\frac{1}{3} m\right)=W_{0} \tag{2-16}
\end{equation*}
$$

and

$$
\frac{2}{3} f-J_{2}-\frac{1}{3} m=0
$$

which yields an extremely important relation between f and J_{2} :

$$
\begin{equation*}
J_{2}=\frac{2}{3} f-\frac{1}{3} m \tag{2-17}
\end{equation*}
$$

or, inversely,

$$
\begin{equation*}
f=\frac{3}{2} J_{2}+\frac{1}{2} m \tag{2-18}
\end{equation*}
$$

This is not only a beautiful relation between geometrical (f) and physical $\left(J_{2}, m\right)$ quantities, but is the key formula for the direct determination of the flattening f from the satellite-determined coefficient J_{2}. Of course, practically a higher-order approximation is required, but nothing shows the essential structure of the problem more clearly than ($2-18$).

Finally we note that, using the ellipsoid as a model for the geoid, we simply have identified the actual potential W with the normal potential U, in keeping with Clairaut's approximation; cf. sec. 1.2.

Gravity. The radial component of gravity g is

$$
-\frac{\partial W}{\partial r}
$$

the θ-component is

$$
\frac{1}{r} \frac{\partial W}{\partial \theta}
$$

so that

$$
\begin{equation*}
g=\sqrt{\left(\frac{\partial W}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial W}{\partial \theta}\right)^{2}} \doteq-\frac{\partial W}{\partial r} \tag{2-19}
\end{equation*}
$$

since $(\partial W / \partial \theta)^{2}$ is of second order. The differentiation of (2-9) gives

$$
\begin{equation*}
\frac{\partial W}{\partial r}=G M\left(-\frac{1}{r^{2}}+3 \frac{a^{2}}{r^{4}} J_{2} P_{2}\right)+\frac{2}{3} \omega^{2} r\left(1-P_{2}\right) \tag{2-20}
\end{equation*}
$$

Now we substitute, by (2-6),

$$
\begin{equation*}
\frac{1}{r^{2}}=\frac{1}{R^{2}}\left(1+\frac{4}{3} f P_{2}\right)+O\left(f^{2}\right) \tag{2-21}
\end{equation*}
$$

in the other small terms, r and a may simply be replaced by R. This gives, also considering (2-14) and (2-17),

$$
\begin{equation*}
g=\frac{G M}{R^{2}}\left[1-\frac{2}{3} m+\left(-\frac{2}{3} f+\frac{5}{3} m\right) P_{2}(\cos \theta)\right] \tag{2-22}
\end{equation*}
$$

For the equator, $\theta=90^{\circ}, P_{2}=-\frac{1}{2}$, this gives equatorial gravity

$$
\begin{equation*}
\gamma_{e}=\frac{G M}{R^{2}}\left(1+\frac{1}{3} f-\frac{3}{2} m\right) \tag{2-23}
\end{equation*}
$$

(we do not distinguish here between gravity g and normal gravity γ !); for the pole, $\theta=0^{\circ}, P_{2}=1$, we have polar gravity

$$
\begin{equation*}
\gamma_{p}=\frac{G M}{R^{2}}\left(1-\frac{2}{3} f+m\right) \tag{2-24}
\end{equation*}
$$

so that for the gravity flattening $(1-84)$ we get

$$
\begin{equation*}
f^{*}=\frac{\gamma_{p}-\gamma_{e}}{\gamma_{e}}=-f+\frac{5}{2} m \tag{2-25}
\end{equation*}
$$

This gives another beautiful formula

$$
\begin{equation*}
f+f^{*}=\frac{5}{2} m \tag{2-26}
\end{equation*}
$$

due to Clairaut, which relates the geometrical flattening f and the gravity flattening f^{*} in a surprisingly simple way. There is a physical interpretation also for the dimensionless quantity m : by (2-14) and (2-23) we have, disregarding $O\left(f^{2}\right)$,

$$
\begin{equation*}
m=\frac{\omega^{2} R}{G M / R^{2}}=\frac{\omega^{2} a}{\gamma_{e}}=\frac{\text { centrifugal force at equator }}{\text { gravity at equator }} \tag{2-27}
\end{equation*}
$$

Then (2-22) may be transformed, using (2-2), to

$$
\begin{equation*}
g=\gamma_{e}\left[1+\left(-f+\frac{5}{2} m\right) \cos ^{2} \theta\right] \tag{2-28}
\end{equation*}
$$

or, by (2-26),

$$
\begin{equation*}
g=\gamma_{e}\left(1+f^{*} \cos ^{2} \theta\right) \tag{2-29}
\end{equation*}
$$

This equation could also have been derived as a first-order approximation to Somigliana's formula ($1-23$); similarly there is a rigorous, though less simple, equivalent of Clairaut's formula (2-26) for the level ellipsoid; cf. (Heiskanen and Moritz, 1967, secs. $2-8$ and $2-10$) and eq. (5-69) later in sec. 5.2 .

If we had a uniform coverage of the earth by gravity measurements (unfortunately we don't), then we could try to fit a formula of type (2-29) (to a higher approximation) to these measurements, obtaining f^{*}. Then the flattening f could be derived by (2-26) from

$$
\begin{equation*}
f=-f^{*}+\frac{5}{2} m \tag{2-30}
\end{equation*}
$$

This is a complete gravimetric analogue to (2-18): it permits to determine the flattening f from gravity flattening f^{*}, whereas (2-18) allows the computation of f from the satellite-determined J_{2}.

2.2 Internal Field of a Stratified Sphere

First-order ellipsoidal formulas, as we have seen and will see, are basically spherical formulas with corrections on the order of the flattening f. In this sense, the sphere serves as a reference for the ellipsoid, and it will be useful to study the gravitational field of a stratified sphere, such as shown by Fig. 1.5.

The external gravitational field of any spherically symmetric distribution is given simply by

$$
\begin{equation*}
V=\frac{G M}{r} \tag{2-31}
\end{equation*}
$$

It is formally equal to the potential of a mass point, regardless of the inner structure of the body as long as it is spherically symmetric. This is seen immediately on writing the general spherical-harmonic expansion (1-36), with (1-47), in Laplace's form

$$
\begin{equation*}
V=\sum_{n=0}^{\infty} \frac{Y_{n}(\theta, \lambda)}{r^{n+1}}=\frac{Y_{0}}{r}+\sum_{n=1}^{\infty} \frac{Y_{n}(\theta, \lambda)}{r^{n+1}} \tag{2-32}
\end{equation*}
$$

Of the Laplacian harmonics $Y_{n}(\theta, \lambda)$, only Y_{0} is constant; cf. (1-33). In the case of spherical symmetry, all functions $Y_{n}(\theta, \lambda)$ must be missing except the constant Y_{0} which, by ($1-3$), is seen to be equal to $G M$; this proves (2-31).

Gravity outside the sphere is then simply

$$
\begin{equation*}
g=-\frac{\partial V}{\partial r}=-\frac{d V}{d r}=\frac{G M}{r^{2}} \tag{2-33}
\end{equation*}
$$

Note that if we consider the sphere as a zero-degree approximation to the ellipsoid, it must be nonrotating since $\omega^{2}=O(f)$ by (2-10), so that $f=0$ implies $\omega=0$. Thus, to this primitive approximation, $W=V$, and gravity coincides with gravitational attraction. The spherical symmetry of $(2-33)$ is obvious. Eqs. $(2-31)$ and $(2-33)$ are valid down to the surface of the sphere.

