(Elemente Det Alathematik.

für
ben matgeuntijoben Hnterridyt an Gügeren Segrantalten
bort

Dr. Efitidridy firiòt,

Dberfebrex am ©bunafium zu samm.
Erfter Their.

Migemeine Ar ritgmetif und Mgebra.

Berlin,
(5). Grote'ide Berlag

Horede.

In ber vorliegenben neuen 2xflage wird man ben uriprüngliden Ban und feine $\mathfrak{A l u s f u ̈ l y r u n g ~ i n ~ a l f e m ~ W e j e n t l i d i e n ~ u n b e r a ̈ n d e r t ~ b e i b e b a r t e n , ~}$ Daneben aber im CEinzelnen bielfad Das Streben nadi Berbefferung, und
 fidutigt finben. In allen Foullen tonnte Dieje leţtere Beriudfilidtigung freifidy nidy fattinden, idion Deß̉balb nidyt, weil Fälle vorgefommen find, in Denen gerade Dab̉, was̉ der Æecenient verlangte, ebenjo im Bude ftand, Das betadelte alfo gar nidy vorbanden war, fowie weil mebrfadi bie Forberungen beridiebener Beurtheiler cinander birect miDerjpradjen. शud Dürfte eş für Den Berf. niăt gerathen fein, foldjen $2 \mathfrak{A n f i}$ iditen anderer, welde mit feiner eigenen päbagogiiden Erfabrung nidgt übereinftimmen,
 nur in Einzelbeiten, zu ändern, nadjoem baffelbe in ber bisher vor= liegenden Form an einer größeren Reibe bon $2 \mathfrak{A}$ ftalten CFingang ge= fumben hat.

So babe id mid) 3. B. nidt entidiliegen fönten, Die Beweife von
 ganzer, politiver (Exponenten) aufgeftellt waren, nadfger aud nod für bie
 fübren, und mid auf eine furze $\mathfrak{A n g a b e}$ ber Diefen $\mathfrak{A u s f u ̈ b r u n g e n ~ z u ~}$
 alfgemeinen $\Re i \not a t i g f$ feit vom Sajutler felbjt verlangt wird, ift Demjelben nad. Dem Borausgegangenen und Den gegebenen $\mathfrak{A n b e n t u n g e n ~ i d w e r l i d ~}$ $\mathfrak{z}^{\text {ut }}$ viel zugemutbet, vielmebr geftaltet fíh baburd biefer शadimeis zu einer Der $\mathfrak{H e b u n g}$ Deş Sđuflers bienenben $\mathfrak{A u f g a b e , ~ u n d ~ a l l e i n ~ b u r d ~}$ folde Selffttgätigfeit beffelben wiro ber Character einer "langweiligen" Wiedergolung befeitigt werben, Der Durd Die betreffende 2 Hupfübrlideteit

 Den Begriff Der irrationalen Bafl jajon bei Der Divifion (Dem Mefien) einguführen, obgleid bies mifienida aftlid vielleidt ridtiger wäre. -

 laufenbent Paragraphen=Summer febern. Mefulidies gilt won Den Retten= brüdjen und ber Wabridjeinlidfeitşredung. Wenn übrigens eritere ausgedebnter bebandelt find, ala dies gemübnlidy ber fall ift, io glaube id) aud) Dafür gute (Sründe zu baben. Dieferben liegen zunädjt in ber Durd) Den Gegenftano gebotenen ©elegenbeit zur 2 tnmendung forft felten vortommenber ভdulupweifen, wie Deş ভdluffes von n auf $n+1$, fobant

 Kaft fein, bei ben Sogaritgmen bie wenig erquicflidje und biel Beit erfor= bernde Bebandlung veralteter Methodent zur Beredjung ber $\mathfrak{T} a f e l n$ fallent
 Die Möglidufeit jener Bered, nung, und zwar jedes einzelnen \&ogaritymus aud) auber Der Feibe, in fehr furzer Beit flar gemadyt werbent fant. (Ebenfo Dürfte es angeneநm fein, in תürze eine Methode zeigen zu fïnnen,
 beliebiger häberer ©rabe näherungảwife aufulafen. Selbitwerfündliá liegt es mir babei fern, eine $\mathfrak{B o r j} \dot{\operatorname{joj}} \mathrm{rift}$ geben $\mathfrak{z u}$ wollen, und einer $\mathfrak{B e}=$

 (Eongruenzen auşgeid)lofien mod mid) an Den betreffenden Stellen auf ben bejonderen Fall ber Theitbarfeit bejduanft. In \mathfrak{H} nterridit gilt ja ohne:
 Sefabr, zu weit zu gefjen, liegt namentlid) auf Dem genannten ©ebiete febr nake. Die elegante Rürze allgemeiner Entwidelungen, meldue mit einem Sajlage viele bejondere Falle umfafien, bewirft für Den Sduuler
 des Cetingetnen.

Eine elementare Einleitung in bie TGeoric Der Determinanten ber neuen $\mathfrak{A u f l a g e}$ beizufügen, ifiten mir Debfalb nod nidft angejeigt,

 Seft einen erbebliá größeren $\mathfrak{l t m j a n g}$ erbalten haben, twas gegenüber dent Umfand, Daß Die Finfübrung Der Determinanten in Den ©ஹul=Unterridt
nodi weit Davon entfernt if, cine allgenteine zu jein, nidit ohne Bedenten wäre. Dod bebalte the mir vor, Den Segenftand in einemt befonderent Seitden zu bebandeln, weldjes als $2 \mathfrak{t n h a n g}$ zu Dem vorliegenden, wie aud zu anderen §efrbüldern Der \mathfrak{Y} ritgmetif Dienen fann.

 meiren beiten Dant.
$\mathfrak{y a m m}$, im Samar 1874.
heidt.

Inhalt des erten ©heiles.

Eeite
Einleiturg 1
I. $\mathfrak{4} 6 \mid$ dnitt: Die vier Species 2
I. ©apitel: அibbition uno Subtraction $\mathbb{\$ 1 - 9}$
11
11
II. Capitel: Mrultiplication und Divifion $\$ 10-17$
2tubang 1: Bon ben Froportionen 22
9nthang 2: Säde aus ber るahlenlebre 27
2tnhang 3: Sakleniyiteme 32
II. Xbjanitt: Wotenzen, Wirzeln uno Logarithmen 36
III. Capitel: Wotenziren \mathbb{S} 18-21 -
IV. Eapitel: Rabiciren $\$ 22-27$ 39
V. Eapitel: Logaritbmen $\$ 28-31$ 53
III. अ6jdnitt: (Sleidungen 59
VI. Eapitel: $\mathfrak{B o n}$ ben Sleidungen überbaupt unb ben Befimmungs: gleidungen erften (5rabes \$ 32. 33 -
VII. Eapitel: Sleidungen zweiten (3ntabes $\$ 34-36$ 64
$\mathfrak{A r t b a n g} 4$: Sleidungen 3. (5rabes mit einer $\mathfrak{H n b e f a n n t e n ~}$ 67
Hntjang 5: Das Mnfeber ber (Sleidutngen 70
 74
2tnbang 7: Exponentialgleidungen 76
IV. $\mathfrak{A b j}$ dutitt: $\mathfrak{2} \mathfrak{n} f a n g$ gigrünbe ber Göberen $\mathfrak{A x r i t b m e t i f ~}$ -
VIII. (5apitel: Bon ben Яeiben \$ 37-42 -
IX. (5apitel: Bon ben תettenbrüあjen $\$ 43,44$ 81
X. Eapitel: Eombinationsfebre $\$ 45-49$ 90
 97
XII. Eapitel: Binomij¢ 102

Die arrithmetif if die Refre vont ben 3 ahlen und igren Berbinoungent mit einander. Eine 3 abl entitegt Durd 3 äglen (Sumeriren), D. G. Durd) wiederboltes Seşen einer Einkeit (${ }_{3}$. B. ein Biund, ein Meter, ein $\mathfrak{B a u m}$), fie ift aljo eine furze Bezeidynug für cine beftimmte Menge
 Die Reibe ber naturrliden 3 ablen $1,2,3,4,5, \ldots$, welde bis ins $\mathfrak{U n}=$ endidide fortididreitet.

Sebe Batit if alio uriprünglidi eine benannte, und bie Benemung wirb ibr burw bie Cintreit gegeben. Man fann aber audf bon ber Benemming abfeben,

 man unbenannte 3ahlen.
 Der $\mathfrak{B u d j f a b e n , ~ u n d ~ z w a r ~ e n t w e d e r ~ z u r ~ B e g e i d m u n g ~ v o n ~ f o l d i e n ~} \mathfrak{Z a f l e n t}$,
 id im Sinne babe, betragt mit 7 zulammen 12; wie beigt die 3 abl? tworauk fid für x Der Werth 5 ergiebt), DDer won foldjen, Deren Wigerth
 liebige beftimmte Sahl unter einem folden Budftaben vorzuftellen. Diefer leestere (Gebraud ber ßudjfaben finbet namentlid) zum Znocte furzer Darftellung allgemeiner Regeln und Befebe fatt, weldje für allle Sablen, abgejeben von ibren ipeciellen Werthen, ©eltung baben.
ßedinen heigt burd ⿹erbindutg von zwei oder mefreren 马ablen steue 3 ablen ableiten, welde zu jenen in einer vorgeidxtiebenen Begiefung ftebert.

Wiro Derjelbe Wudifatbe in einer und berfetben ॠednung mieberbolt gebraudif, to bezeidgnet er jedes̉mal diefelbe Babl.

Ant biefer Stelle muß burd mëglidit zablteide Beifpiele ber Gebrauळ ber
 bie aus bem practijdent Refifnen befannten Æegeln eignen. Man verfabre etwa wie forgt:
©88 if $\frac{2}{7}+\frac{3}{7}=\frac{5}{7} ; \frac{5}{11}+\frac{3}{11}=\frac{8}{11} ; 1^{3}+\frac{2}{17}=\frac{15}{17}$, u. f. w. 2WMen Biefen Beipielen liegt ein gemeinidaftlidfes Gefek (gleidmamige Briüde werben abbitt, inbent man thre säfiler abbitt und ben Renter beibebält) zu Grumbe. Mittelf Reiot, ©femente ber Mratbematif. I.
 Dargeftellt werben, in weldfer alle mögliden bierber geförigen beftimmten $\mathfrak{A l}$ fgaben enthalten finb. So erjält man bie obigen Beippief, wenn man beziefungsimeife für a, b, c bie Werthe 2, 3, 7, ober 5, 3, 11, ober 13, 2, 17 einfebt. In äbn=
 inbem man bie formelt für biefelfe aufiudien und bie gefunbenen, ober audit anbere, ummittelbar aufgeftelte, wieber in \mathfrak{W} orten ausipredien $\mathrm{Yä}$ Ét.

I. MGjidnitt: Die vier Specieణ.

I. Eapitey.

(xiditian and Subtratian.

§ 1. Grflĭrung.

 c jucjen, weldje entfegt, wenn man von a (Einheiten anfangend, um b
 $a+b$, getejen "a plus $b^{\prime \prime}$, außgedriuctit; a beißt Der शugend, b Der सDDend, $a+b$ bie Summe und c Der $\mathfrak{W e r t h}$ der ©umme.

Mant erfält Denjelben Werth Der Summe, wenn man von a Ein= Beiten an um b Ceinkeiten, und went man won b Gintreiten an um a Einheiten weiter zählt, oder es ift

$$
\begin{equation*}
a+b=b+a \tag{1}
\end{equation*}
$$

 tion aud, wie folgt, erflären:

Zwei Zahlen a und b aboiren, heipt eine oritte Zahl e fuめen, welde ioviel Eingeiten enthalt, als a und b zu= fammen.
 Weiterzăhlen mit ben einzefnen (Fintreiten, fondern mittelf ber (auswembig geternten) Жejultate aller Summen einsiffriger Bahlen ("Eins unt (Eins"). -

$\mathfrak{B e}$ ifpiele: §eiß, ভammlung b. Beifp. u. शufgaben. § 1, Barbel I 2-3, 11; II 8, 14, 18.

§ 2．Grtllärumg．

Eine $\operatorname{Zahl} b$ won einer $3 a b l d$ jubtrahiren（abziefjen），beip̄t zu dem Werthe c einer Summe und ihrem einen Summanden b Den anderen Summanden a fudjen．Mian idureibt $c-b=a$（gelejen ${ }_{\text {，}} c$ minus b gleidy $a^{\prime \prime}$ ）und nent c Den Minuend，b Den Subtrakend，$c-b$ eine Differenz und a Den Werth Der Differenz（Meft）．

Eine Differenz ift alio ein Beidfen für biejenige るahl，weldfe zum Subtrakenden abbirt，Den Mimuenden giebt，ober es ift

$$
\begin{equation*}
(c-b)+b=c \tag{2}
\end{equation*}
$$

Anmerfung 1：Der Befrand ber ®lammer in ber bortefenden wie in ben fpäteren Gifeidungen，als einess Mrittels，um ben Inthalt berfelben zu ber Bebeutung

Unmerfung 2：Die Eubtraction if alfo bie ber 2tbbition entgegengefebte ॠedinurgsart．Streng gertommen giebt es zwei Yaten ber ©ubtraction，ba entweber

 welde man zu bem Subtrabenbus abbiren mub，um ben Mtimuend zu erlangen， im erferent Falle bageget wäre bie Babl gefucit，welde man erbält，went man
 Beibe Eubtractionen fallen aber in foolge ber（Gleifung（1）in eine ケed）nungsar зијаmmen．

Die practidje 2 utsführung ber Subtraction geldieft vermittelit ber－als befannt vorausgefegten－Wsertbe aller Differnzen ein＝bis zweiziffiger Sablen． （＂Eins bon（Fins ${ }^{4}$ ．）

Minuens umb ©ubtrafeno einer Differenz mülifen felbitberftandlic）in ben＝ felben Einbeiten ausgebriüt fein．

Beifpiele：おeis $\$ 2 . \S 8, \mathfrak{N r} .1 \beta, 5 \beta, 11,13,18$ ．Barbey I 4－5，12， 16－18．II 9，10，15，19， 20.

Anmerfung 3：Die unbefannte Grob̉e x aub ber Gleidung $x+b=c$ finben，beift afio nidide anberes，als b won c fubtrajitirn．2ethntidid folgt aus

$\S 3$.

Der ©segeniak zmifiten MDDition und Subtraction fülurt

ভubtrahirt man bon einer ©umme einen ifrer ©um＝ manden，fo ergält man ben anderen，oder
（3）$(a+b)-b=a ;(a+b)-a=b$ ．
$\mathfrak{B e w e i s : ~}(a+b)-b$ bedeutet Den Summanben，ber zu b aboirt $a+b$ gieft，o．i．a ．

Subtrabirt man eine Differenz bon ibrem Minuend， To ergalt man ben Subtrakend，ober

$$
\begin{equation*}
a-(a-b)=b \tag{4}
\end{equation*}
$$

Beweis：Denn b giebt nad．（2），zu $a-b$ abdirt，zur ©umme a ． Beilpiele in §eis $\$ 8$ ．Barbet III 13－18．

Slammern.

Sollen mefor als zwei 2ablen burd 9xdotion oder Subtraction ver= Gunden werden, io fanm Dieş nur in Der Weife geidelyen, Daß̄ man zu= nädit z wei Derjelben mit einander berbindet, Das Яefultat Diejer Ber= binoung als einfadje Babl an bie Stelle ber beiben in ibr bereinigtent Sablen Febt, uno in Derjefben Weife Durdy Berbindung won je zwei Bablen zu einer neutn fortfährt, Gis man zu Dem ©sejammtrefultat gelangt.

Beifpiel: $5+7-3-4+11-2$. E8 if $5+7=12,12-3=9$, $9-4=5,5+11=16,16-2=14$.

Da man aber durd die berbindung ber gegebenen Bablen in ber= ¡希tebener Reikenfolge zu veridiedenen Fefultaten gelangent fann, To mus bie ঞeibenfolge angegeben werden, in welder bie eingelnen Bablen zu je zweten mit cinander verbunden werben follen. Dies geidjeft durd) ®lammern.

So ift z. \mathfrak{B}. $[(12+7)-(3+8)]+(11-2)=[19-11]+9=8+9=17$, bagegen $\{12+[(7-3)+(8+11)]\}-2=\{12+[4+19]\}-2=$ $\{12+23\}-2=35-2=33$.

Beifpiele 5eis $\$ 6,1-8$. Barbet II 47, n. 1-4.

§ 5. Beränberung ber Feihenfolge bei Mbbitionen unb Subtractionen - bye Beränberung bes Mejultates.

Degriak: Solfen mehrere Bablen nad einander aboirt merbent, io ift es einerlei, in welder Reikenfolge bies ge= faicht, oder
(5) $(a+b)+c=(a+c)+b=a+(b+c)$, und umgefebrt:

$$
\begin{equation*}
a+(b+c)=(a+b)+c=(a+c)+b \tag{6}
\end{equation*}
$$

Beweiz: Die \mathfrak{H} nzafll Der in Den Summanden enthartenen Eint
 Der Ћeibenforge Der Summanden nidyt berändert.
$\mathfrak{Y n m e r f u n g ~ 1 : ~ M a n ~ f a n n ~ b i e ~ v o r f t e h e n b e n ~ S a ̈ ß e ~ i n ~ a b g e t i r y t e r ~} \mathfrak{F o r m}$ aud To ausipreffen:

Statt cine 3 ahl zu cinter ©umme zu absiren, fann man fie zu cinem ber ©ummanben abbiren.
 manber nad einanber (in beliebiger Æeifenfolge) abbiren.

அnmerfung 2: (Es ift bemnad aud)
$\{(a+b)+c\}+d=(a+b)+(c+d)=\{a+(b+c)\}+d$, u. f.w.
Sehrias: Sollen mehrere 3 ahlen mad einander fubtrahirt werden, fo darf mandieferben einzeln in beliebiger Æeiken= folge, oder fatt befien aud igre Summe fubtrabiren, und ungelegrt, foll cine Summe von einer 3 ahi fubtrahirt
werben, fo fann man igre Summanden eingeln, und zwar in beltebiger Ћeihenfolge nad einander fubtrahiren, D. G.,
(7) $(a-b)-c=(a-c)-b=a-(b+c)$,
(8) $a-(b+c)=(a-b)-c=(a-c)-b$.
 trahirt, wenn man bieferben nadi und nadi in befiebiger Яeifenfolge und soent man fie zugleide, b. Y. ifife Summe, jubtrafirt.

Onmerfung 1: atrbere fafiutg ber Säbe: Statt eine 3 abl von einer Differenz zu fubtrabiren, fann man fie bom Minuend fubtrabiren Dber au円 $\mathfrak{z u m}$ Gubtrakend abbiren.

Statt cine ©umme zu fubtrabiren, fann man ihre Summanben nad einanber fubtrahiren.
\{nmerfung 2:

$$
a-(b+c+d)=a-b-c-d=a-c-b-d, \text { и. ү. w. }
$$

\&efrank: Solf zu einter $\mathfrak{B a h f}$ eine zweite abdirt $\mathfrak{u n d}$ bant oon ber Summe etat britte fubtrabirt werden, fo fannman entweder zuerft Die Dritte jubtrahiren und Dann Die zweite abdiren, oder bie Differenz Der zmeiten $\mathfrak{u n D}$ Dritten zu Der erften abdiren, und umgetebrt, foll eine $\mathfrak{D i f f e r e n z}$ zu einer Zahl abdirt werden, to fann man ifren Minuend fu ber= felben abdiren und datt ben Subtrahend (bonder ©umme) fubtrahiren, oder zuerft Den Subtrahend jubtrahiren und bann ben Minuend abdiren.

$$
\begin{equation*}
(a+b)-c=(a-c)+b=a+(b-c) \tag{9}
\end{equation*}
$$

(10) $a+(b-c)=(a+b)-c=(a-c)+b$.

Bemeỉ: Denn Die $\mathfrak{A n z a f l}$ Der CEinbeiten, um weldje a vergrögert wirb, ift in alfen fallen biejelbe, nämliad gleid) $b-c$, ba bieje $\mathfrak{2 l n z a h l}$ Durd bie $\mathfrak{B e r j o f i e b e n b e i t ~ D e r ~ \Re e i g e n f o l g e ~ b e r ~ \mathfrak { B e r m e f r u n g ~ o d e r ~ W e r m i n = ~ }}$ Derung nidft verändert pirb.
$\mathfrak{A n m e r f u g}$: Statt cine 3 ahl von einer ©umme fu fubtrabiren, fann man fie oon einemt ber Summanben fubtrabiren.

Statt eine Differenz zu abbiren, fanmman ben Minuend abbiren und ben ©ubtrabend fubtrabiren (und zwar in beliebiger \Re eihen= forge).

Sehriak: Sorf yon einer 3 ahl zuerit eine ztoeite jub= trabirt und bant zu der Differenz eime Dritte abdirt merben, fo fann man zuerft bie dritte abdiren und dant don ber ©umme die zweite fubtrahiren, oder man fann bie Differenz Der zweiten und dritten von der erften fubtrabiren, und um= gefebrt, folf eine Differenzooneiner 3 ahl jubtrahirt werben, fo fant man ibren Minuend von berfelben jubtrabiren und Dann ihren Subtrahend (zu diefer Differenz) abdiren, oder zuerf den Subtrabend abdiren und Dann ben Minuend fub= trabiren.

$$
\begin{align*}
& (a-b)+c=(a+c)-b=a-(b-c) \tag{11}\\
& a-(b-c)=(a-b)+c=(a+c)-b \tag{12}
\end{align*}
$$

Beweiş: Die $\mathfrak{2 l n z a h l}$ Der (Einkeiten, um weldee a verfleinert werben joll, tann burd Die Meibenfolge, in weldjer jubtrahirt und aboirt wirb, nid)t verändert werben und ift in affen Frallen gleid $b-c$.
 fant man fie fum Minuend absiren ober bom Subtrabend fub= trahiren.

Statt cine Differenz zu fubtrahiren, fann man ben Minuenb fubtrahiren und ben Subtrakend absiren (und zwar in beliebiger Reihenfolge).
 fammenfafien, bá̇ a) bie $\mathfrak{F e r a ̈ n b e r u m g ~ e i n t e s ~ S u m m a n b e n ~ e i n e r ~ © u m m e ~ b u r x ~}$ 2 2bbition ober Subtraction eine gleidje Beränberung ber ©umme, b) bie bes Mi= $\mathfrak{n u e n b e n t e n t e r ~ D i f f e r e n z ~ c i n e ~ g l e i d j e , ~ b i e ~ b e s ~ S u b t r a b e n b e n t ~ b a g e g e n ~ e i n e ~ e n t g e g e n = ~}$ gefegte Weränberung bes $\mathfrak{F B r t t h e s}$ ber Differemz bewirtt, und baf́ beim 2 (bbiren obet Subtrabiren von Summen ober \mathfrak{D} ifferenzen, bie Eummanben und Minuenben eingeln abdirt, begw. \{ubtrabirt, bagegen bie Gubtrakenden fubtrafirt, bezib. abbirt werben törnen.

Die Beweife ber Refriäbe ergeben fida to unmittelbar aus ben Begrifien ber
 mit anberen 2 Sorten mur wenig beridieben eriducinen tömen. - 2trbere Beweife
 einer und berfelbert anbern Gröbe 子u ifnen wieber gleidie Summen geben, felbf gleid feint müfifer.
 einer Summe bleibt unveränbert, wenn man ben einen Summanben um eine be= liebige 3 abl bergröbert unb ben anberen um biefelbe Sabl bertleinert, unt ber WBerth ciner Differenz bleibt ungeärbert, wenn man thren Minuenben umb ibren ©ubtrabenben um biefelbe Zagl vergröहert, ober um biefelbe Sahl verffeinert. ©s ith alio

$$
\begin{aligned}
& (a+c)+(b-c)=(a-d)+(b+d)=a+b \\
& (a+c)-(b+c)=(a-d)-(b-d)=a-b .
\end{aligned}
$$

\mathfrak{H} nmerfung 4: Sind bie ©ummanben ciner ©umme cinanber gleid, io
 ber Summanben angiebt, bor cinen biefer Summanben, 子. B. $a+a=2 a$,
 To beigt iene beftimmte 3 abl ber ©pefficient ber erferen. Die Summe beigt ein Bielfactes bes cingelnen Summanben. Wan fann biefen legteren als eine (Eint eit betraditen, welfife io oft gefegt ift, als ber ©oefficient angiebt. Beridiebene

 ©oefficienten abbirt (fubtabirt) und Kinter biefen neuen ©oefficienten bie gemein=
 (Subtraction) nidet ausgefilfyt, forbern nut angebeutet werben. - Beilpiele:
$5 a+7 a=12 a, 8 b-3 b=5 b, 2 a+3 b, 7 a-6 b$. - Berveife Yeidft. Bergl. § 10.
§eis § $7-12$. Barbery III $1-12,19-48$, IV $1-15$.

§ 6. Sull und negative 3aflen.

Werben in einer Differenz $a-b$ für a und b beftefige beftimmte Bablen gejeßt, jo tönnen brei mefentlidy veriditedene Fälle eintreten; es fant nämlidy a gröger alz b, oder gleid b, ober fleiner alz b fein. Nur in Dem erjten Falle ift Die Subtraction nadi umferer bizberigen 2Xuffafiung
 . . . erbălt.

Sit $a=b$, To werDen Gei Dem Subtragiren jämutlidje (Eingeiten Des Minuenden wieder weggenommen, es farn alfo feine Eintheit übrig bleibern. Demnad fann man ber Differenz $a-a$ Den Sinn beifegen, bab in ign alle EEinbeiten befeitigt find, aljo feine übrig gebfieben ift. Wir bezeidnen

(13) $\quad a-a=b-b=0$.
©た forgt aus diefem Begriff ber ఇull fofort

$$
\begin{align*}
& a+0=0+a=a \tag{14}\\
& a-0=a \\
& 0+0=0-0=0
\end{align*}
$$

Dagegen fann won Null feine $\mathfrak{B a g l}$ jubtrahirt werben, oder Der \mathfrak{A} uß $=$ bruct 0 - a bat (vorläufig) feinen Simn.

Dafielfe findet fatt, wenn in einer Differenz Der Minuend tlei= ner als ber Subtrabend ift, allein man fann aud in befen falle Der $\mathfrak{D i f f e r e n z}$ nidt felten einen Sinn beilegen, wie folgende Beifpiele zeigen:
(Es madje Semand a Sdritte nad) einer beitimmten Riđtung und
 um $a-b$ Edritte in ber uripringlidien Fididung borvoärte gefommen. Gejegt er fei burdib bie a Edritte bon bem Dete \boldsymbol{A} nad bem Dite \boldsymbol{B} gelangt, io wirb er 1) weent b fleiner als a ift, burd) bie b Єぁritte naळ einem zwifiden B und A liegenben Drte C gelangen, und es ift
 $A C=a-b$. Sit 2) $b=a$, jo gelangt er wieber nadif A, und es iff $a-b=0$. Ift aber 3) b gröber als a, fo fommt er nadf einem auf ber ßerlängetumg bon $B A$ über A binaus liegenben Drte C^{\prime} unb if bann um bie Etrecte $A C^{\prime}$ bon A entfernt. Er ift alfo umb $b-a$ Sdritte noळ über A binaus, nad ber entge=

 zu nefmett fint.

Dentt man fix überfaupt auf einer ©feraber vort einem \mathfrak{F})utte A aus naw beiben Ridtungen $A B$ und $A C$ gleidfe ©treden abgetragen unb bie Entfernurgen ber eingelmen Theilpuntte von A begiefurgsweife bural bie Bablen $1,2,3, \ldots$ bezeidnet, fo fann man bie erfere Midatung bie pojitive unt bie auf ibr gezafitent Saflen pofitive Zablen, bie entgegengefegte bie negative und bie auf ift gejäblten

Bablen negative Sablen nemen. Want fann ferner bie erferen Sablen won ben

- boriegt, meldje beibe Zeiden jebodi) alz jogenannte Borzeiden von ben ent=
 werbett müffert. Die Differens $a-b$, in weldjer b größer als a ift, erbält alfo Gier ben Sinn, bab fie eine negative $3 a b)$ bebeutet, und zwar gleid) - $(b-a)$ if.

 nadi) redits und bie Drebutg nadi lints, zufünfige und vergangene 马eit, $\mathfrak{B e r}=$ moggen und ©dulben, Wärme und ภältegrabe, norblide und füblide geograplifide Breite, u. bgl. m.).
(Exb giebt alfo Bakilen, welde in einem folden ©jegentak zu cinander
 anderen 2 (rt verfleinert, Durd) Sinwegnahme (Subtraction) einer folden bergrößert wird, und gleidu grobe Bahlen beider 2trt bei ifrer Wereinigung (24Dotion) fid gegenjeitig aufgeben. Solde Bahlen follen algebraifise genamt merben, mogegen joldue, weldye nur bie Menge ber (Einteiten zăhlen, ohne ihren ©egenfag zu berülfiditigen, abjolute Bahlen beigen follen.

Bei algebraijajen Bablen fann man bie eine ber beiben 2 2rten als die urjprünglide betradten, uno die ibr angebörigen Bahlen werben pojitive genant und burdi Das vorgefet̨te Beidjent als foldje fentlidy gemadjt. Die Bablen Der entgegengejetsten $\mathfrak{A r t}$ heigen negative und erbalten bas Borzeidjen -.

Bei algebraijujen Baflen feşt fixid Die nadi) Der einen Ridätung ine
 tung ins Hnemblidje fort, nady folgendem Sdjema:
$\ldots .-4,-3,-2,-1,0,+1,+2,+3,+4, \ldots$.
Eine Differenz, Deren Subtrahend größer ift als der Minuend, Gat Die Bedeutung einer negativen Sabl, und es if (15) $\quad a-b=-(b-a)$.

Dent ift $b>a$ und foll Die ©reflärung Der Differenz in $\$ 2$ audi) für Diejen Fall (efeltung beharten, io ift $a-b$ biejenige Bafl, welde zu Dem größeren Subtrakenden b abdirt, Den fleineren Minutenden a als Summe giebt; eß muß aljo ber Werth von b burd) §inzufugung der Differenz. berffeinert werben, aljo $a-b$ negatio fein, und zwar gleid $)-(b-a)$, da $b-a$ (Finheiten bon b jubtrahirt werben muffen, umt a zu erhalten.

Dber: if b gröber als a, fo bleiben, nađbem um a Einbeiten zuruiaggezäblt ift, now $b-a$ (Eingeiten weiter zuriuduuably

 oberr ermähnte Differeng 0 - a ebenfalla bie Bedeutung einer negativen Bahl erhält, D. h.
$0-a=-a$.
 $0+a, 0-a$ entfander. - Die Zaht a heipt bas (flied ber algebraifajen Zahl. - Jeber abjoluten 3 ahyl fann man bas Эorzeiden + geben.

9(nmerfung 2: Negatibe 3ablen baben in allen practifden făllen nur bann einen Sinn, wenn ein ©egenfaţ ber Zablen in ber erwäbnten Weife wirfilia exititit.

§ \%. Wboitian utis ©ubtraction mit algelaraijajen Bablen.

91uß Der Certlärung Der algebraifdjen Bablen folgt, Dā́ eitte gegebene Babl Durd) Aldoition einer negativen $\mathfrak{Z a h l} \mathfrak{u m}$ bie abjoluten Einkeiten ber Leģteren verffeinert, Durd) Subtraction einer polduen Dagegen bergrößert wird, wäfrend poitive Sablen wie getwöfulidje (abjolute) zu bebandeln find. EFE ift alfo

$$
\begin{align*}
& M+(+a)=M+a \tag{17}\\
& M+(-a)=M-a \\
& M-(+a)=M-a \\
& M-(-a)=M+a
\end{align*}
$$

Fermer folgt für bie 2xDoition zweier algebraijajer Bahlen:

$$
\begin{align*}
& (+a)+(+b)=+(a+b) \tag{19}\\
& (+a)+(-b)=+(a-b)=-(b-a) \\
& (-a)+(+b)=-(a-b)=+(b-a) \\
& (-a)+(-b)=-(a+b)
\end{align*}
$$

b. h. Gaben Die Summanden gleide $\mathfrak{B o r z e c}$ ifre ©fieder und giebt Der ©umme Das gemeinidaftlide Bor= zeiden; Gaben Die Summanden entgegengejeßte Borzeiden, io fubtrabirt man igre Gfieber und giebt Der Differenz bas Borzeiden De马 Minuenden.
 gieft ber Different bas Worzeidjen ber gröberen.

Ferner folgt für die Subtraction algebraifaler ©forgen, Daß̄ Diefelbe gleidbebenteno if mit Der MDDition Der entgegengefeģten (frröge, ober Die Fegel:
$\mathfrak{H m a f g e b r a i f a j e ~} 3 \mathfrak{a h t e n}$ 子u \mathfrak{H} btrahiren, ändere man baş Borzeiden Dez Subtrahenden und abdire Dann die 3 ahlen.
 $\mathfrak{B a r b e t}$ VA $1-29$, B 1-29.

Anmerfung: Die Einfübrung ber গull unb ber negativen Sahlen geidiebt in Folge ciner Erweiterung bes æegrififs ber Differenz in $\$ 2$, wontal) bie bort für abjolute 3 ahten aufgefitite erflätung berfelben aud für bie Faulle gilt, in welden ify nidt burd ablolute 3 ablen ©enuge geleifet werben fann. शud ber Begriff ber ©umme erbält burd bie neuen $\mathfrak{Z a b f f o r m e n t ~}$

(Es) folgt aber bieraus, baE bie in $\mathbb{\$} 3$ unb 5 aufgefelten §egriäse, fofern fie nur aus ben genannten allgemein geltenben Begriffen ber Differenz und ber ©umute
 negative $\mathfrak{S}^{2 h}$ len auftreten.
©s enthalten alfo bie betrefifenben Formeln aud bic शednungsregeln für গull unt negative Sablen al8 befonbere foulle．So geft z．B．bie Formel（12）für $b=c$ ӥber in $a-0=(a-b)+b=(a+b)-b$, b．․ $a-0=a$ ； unb für $b=0$ in $a-(-c)=(a-0)+c=(a+c)-0$, b．i．$a-(-c)$ $=a+c$ ．

§ 8．Palyname．－duflajung ber תlammern． 2Igebraijate ©ummen．

Sede $\mathfrak{B e r b i n d u n g ~ w o n ~ m e h r e r e n ~ S a b l e n ~ D u r d ~} 2$ 2bdition ober Sub traction beipt ein Folynom（ $\mathfrak{B i n o m}$ ，Trinom）．

Man if ubereingetommen，in einem folden bie תlanmern，weldeje Die Ћeihenfolge Der Dperationen angeben，in Dem Jafle wegzulaffen，Dan Dieje Ћeigenjolge diejelbe ift，wie Die Der Bablen in Dem Folynom．

Whan farreibt affo z． \mathfrak{B} ．fatt $\{[((a+b)-c)-d]+e\}-f$ ， $a+b-c-d+e-f$ ，unઠ überall，wo bie Жeibenfolge ber Жedinungen niddt Dur（）תโammern beftimmt if，muछ alfo bieienige gerommentwerben，in weldier bie Sablen geididrieben finb．－Weldfe ber früheren ©fleidungen lafien fid biernad einfadjer fixtreiben？
（Durd） \mathfrak{A} ntwendung ber formeln（5）－（12）läß̆t fial in jedem Folynom die Æeigenfolge der Dperationen jo veränoern，Dā́ biernad bie ふlammern weggelafien weroen tönten．Man nent bies̉ Das શuflēfen ber凡lammern．
（5．fei 子．B．$a-[(5 b+\{c-3 a\}+4 b)-\{6 a-(3 b+2 c)\}]$ gegeben， to ergirbt fïd Gierfür ber शeifice nadt

$$
\begin{aligned}
& \text { au8 (12): } a-(5 b+\{c-3 a\}+4 b)+\{6 a-(3 b+2 c)\}, \\
& \text { au8 }(8): a-5 b-\{c-3 a\}-4 b+\{6 a-(3 b+2 c)\}, \\
& \text { auళ }(12): a-5 b-c+3 a-4 b+\{6 a-(3 b+2 c)\}, \\
& \text { au8 (10): } a-5 b-c+3 a-4 b+6 a-(3 b+2 c), \\
& \text { au夕 }(8): a-5 b-c+3 a-4 b+6 a-3 b-2 c .
\end{aligned}
$$

Seb̧t man in einem bon ßlammern befreiten Solynome jebem ein＝ zelnen abjoluten ©fliede daz Borzeidjen＋vor，fo fant man jede Subs
 Das̉ $\mathfrak{F o l y n o m ~ i n ~ e i n e ~ S u m m e ~ v e r w a n d e l n , ~ d e r e n ~ c i n z e l n e ~ S u m m a n d e n ~}$ nidyt mebr abjolute，fondern afgebraijd）Bablen find．（Fine foldje Summe
 falden，beren Summanden abfolute Bablen find．

So gefft z．R．bas Foiknom

$$
\text { (a) } a-[(b+c)-\{(d-e)+(f-g)\}]
$$

$$
\text { (阝) } a-b-c+d-e+f-g \text {. }
$$

$\mathfrak{U m}$ baffelbe in eine algebraijide © Summe zu berwanbeln，febt man bafür zunäduft
$(\gamma)(+a)-(+b)-(+c)+(+d)-(+e)+(+f)-(+g)$ ，
uno bierfür nadi（17）：
$(\delta)(+a)+(-b)+(-c)+(+d)+(-e)+(+f)+(-g)$ ．

Man it übereingefommen，bei algebraijden Summen bie 2xboitions＝ zeidjen und Die תxammern für Die einzelnen Summanden，fowie Das $\mathfrak{B o r}=$ zeidjent bes erften çliedes，falla es + ift，megatuafien．

$$
\text { (8) } a-b-c+d-e+f-g \text {. }
$$

In biejer form unterideibet fid Die algebraidje Summe（ ε ）äu $\mathfrak{\beta}$ er rid）in niduta bon Dem Folynome（ β ），aus weldem Diefelbe entitand；Der iturere Unteridied Yiegt Darin，Dáß Die Beiden + ，－in Der algebraifiden Summe alz Forzeiaden ber cinzelnen（5robien betradtet berben，melde Lektere fämmetlidy zu aboiren find，währent fie it dent Folynome \Re ed $=$ $\mathfrak{H u} \mathfrak{n g} \mathfrak{z a z e}$（d）en fino．
 befreite Solynom vhne wseiteres als eine algebraijde Summe angejeben werben fann，indem man Die そednungzzeidjen als Worzeiden und bie to erbaltenen Bablen als Summanden einer ©umme betradtet．
$\mathfrak{D a}$ aber Die Summatben einer Summe in beliebiger \Re eigen＝ folge aboirt werben fömen，io fanm man mumefor aud ben Werth beß Folynoms mittelft jeder beliebigen zwedoienlidjen Reigenfolge der Sum＝ manden ber algebraijden Summe beredfun．

Beifpiele：5ceis $\$ 13,1-12$ ．Farbey III 49－63，IV．

§ 9．9thbition un ভubtrartion afgebraijajer ๔ummen．

 Eine algebraifde Summe witb zu eitter Bahl aboirt， indem man igre einzelnen Summanden in beliebiger feifent

Eine afgebraijde ©umme wird von einer Bahl fubtra＝ birt，indem man igre eingelnen Summanden in beliebiger Яeigenfolge und mit umgefehrten Borzeiden zu der 3 aht fáreibt．

Fractifde \Re Redfungsregefn：©teht vor einer $\mathfrak{I t a m m e r}+$ ，fo bleiben beim Auflofen alle 马eiden unberänbert；felyt vor einer Rfammer－ fo werben affe るeimen umgelefort．

Seifpiele：Şeis $\$ 13, \mathfrak{M r} .13-46$ ．Barbey VA $30-39$, B $30-38$.

II．Capitel．

gtultiplicatian und 刃ivilam．

§ 10．Ërflärungen．

（Fine Summe，Deren Summanden einander gleid find，beigt ein Froduct und wird fürzer geidrieben，indent man einen ber Summanden
 $a+a+a=a \cdot 3, a+a+a+a+\ldots=a \cdot b$.

Der Summand a beipt Der Multiplicand, Die $\mathfrak{2 l n z a b l} b$ Der Summanden Geipt Der Miultiplicator. Fine $\mathfrak{Z a b l}$ a mit einer anderen $b \mathfrak{m u l t i p l i c i r e n}$ beigt eine Summe von b Summanden bilden, Deren jeder gleid) a ift.
 Bei $\mathfrak{B u d j t a b e n a u ß b r u ̈ u t e n ~ f a n t ~ m a n ~ b a , ~ w o ~ f e i n ~ M i ß b e r f t a n d n i ß ~ f r a t t f i n d e n ~}$ fann, Daş mhultiplicationszzeidjen toeglafien, und alio z. B. $a b$ járeiben. Silt Der Multiplicator eine beftimmte Babl, Der Maltiplicanous unbe= ftimmt, wie \&. \mathfrak{B}. in $a \cdot 3$, io pflegt man ben erfferent boranguleken und alfo $3 a$ zu fifreiben. Der Multtiplicator (3) Leipt Dann audi) "(Soef= ficient". Wergh. §5, 92mmerf. 3.

2nmerfung: Bei æedmungen mit benannten Sablen fann nur bet Mul= tiplicans berannt fein. Der Nuultiplicator if fets umbenannt.

Safreibt man bas ßroduct $a \cdot b$ it ber ๆorm Des̉ folgenden Sגjemas:

 unter cinander geftellt find, io fiebt man, Daß das Rejultat Daffelbe wirb, wenn man bie b Einkeiten jeber $\mathfrak{B e r t i c a l r e i k e ~ v e r e i n i g t ~ u n d ~ b i e j e ~} 3 a b l$ a mal nimmt. (Ex ift aljo
(19) $a \cdot b=b \cdot a$,
D. G. in einem $\mathfrak{P r o d u c t ~ f u n t a ~ M u l t i p l i c a t o r ~ u n d ~ M u l t i p l i = ~}$ cand bertauidt werben.

Daker erkalten beibe audu ben gemeinidaftliden 刃amen Factoren.
Yinmerfung: Bei benamten Bablen beadite man aber, bab bei ber Ber= tauldung aud bie Benenuung auf ben neuen Maultiplicand uibertragen werben

§eis § 3. Barbey I 6, 7, 13, 19. II 4-7, 11, 16, 21, 25, 47 n. 5-11.

§ 11.

(Eine 3 abl a Durd eine andere Zahl b dividiren, beißt zu einem Frobucte a und einem feiner Factoren b ben anderen Factor fudjen. Das gegebene Frobuct keigt der Dividendus, Der gegebene Factor ber Divifor. Dã̉ a bural b divibirt merden foll, iajreibt man $\frac{a}{b}$ oder $a: b$;
 und nennt Denfelben einen Quotienten.

Diefe neue Redinuggart mird Dibifion genannt; diejelbe ift ber Murtiplication entgegengejeģt.

थnmerfung 1: ©se giebt aber zwee $\mathfrak{A r t e n}$ bon Dibifionen, ie nadibem ber ge= gebene factor ber Multiplicator ober ber Maultiplicanbus if.
 beist beejentige 3 abl fuđfen, weldfe $b \mathrm{mal}$ als Summand gejegt werben muß, bamit bie Summe greidi a fei, z. \mathfrak{F}.
$\frac{12 \text { Meter }}{3}=4$ Meter, benn 4 Meter +4 Meter +4 Meter $=12$ Meter.
 Geibt biejentige Bafl fudient, weldie angiebt, wie oft b als ©ummanb gefekt merbent

$$
\frac{12 \text { Meter }}{4 \text { Meter }}=3 \text {. }
$$

Die erfere $\mathfrak{A r t}$ ber Divifion heibt ఇheifen, ber erfaltene ఇutient ein

Bei benannten Bablen it im erten Fall ber Dibifor unbenannt, ber Suotient Benannt, im zweiten fall ber Dibifor benamt, ber Duotient unbenamt.
\{nmerfung 2: Wie bie Multiplication eine wieberfolte 2rbbition berfefben Babr, to if bie Divifion eine wiebergolte Subtraction bon einer gegebenen Summe. Wei bem Iheifen wirb ber ভubtrajenb gefudt, ber b mal bon $a \mathfrak{j u b}=$ trafirt werbent fant, bei bem Meffen witb bie $\mathfrak{Y n}_{3}$ aft ber ©ubtractionen gefuat, und biefe lebtere Divifion fann alfo auggefïhtr werben, inbem man boon afub= trabirt, bon bent Ref wieber b fubtrabirt, bies fo lange wiebertyolt, bis tein ॠeft bleibt, und bann bie 2 nzabl ber ausgefuhten ©ubtractionen beptimut.
 beibe Divifionen in ber $\mathfrak{A u s f u ̈ b r u n g ~ i n ~ e i n e ~ \Re e c h n u n g s a r t ~ z u f a n m e r t ~ u n t ~ u n t e r = ~}$ liegen gemeinifartlidjen छsefegen.

Die \mathfrak{Z} usfütrung ber Wultiplication und Divifion in ber Wrariso geldielft übrigens nidit ourdif wieberboltes 2rbbiren ober Subtrabiren, fondern mittelft ber
 entipredjenben ఇuotienten. (Ein mal (Gins uno ©ins in ©ins.)

Seis §4. Barbey I8, 9, 14, 20-23. II 12, 13, 17, 22, 23, 47 n. 12-16.
 zufolge ber Erftärung ber Divifion. Mefinliaf folgt aus $a x=c, x=\frac{c}{a}$ unt aus $\frac{c}{x}=b, x=\frac{c}{b}$. Beippiete.

§ 12.

Die Crtiörung Deả Quotienten in $\$ 11$, beziefhungsimeije der ©egen=「ak der Multiplication und Divifion, if in folgenden Gormeln auşgeprodien, Deren ßitiotigteit fiad Leidet auß Dem Begriffe ber Divifion ergiebt:

$$
\begin{align*}
& \frac{a}{b} \cdot b=a \tag{20}\\
& \frac{a \cdot b}{b}=a ; \frac{a \cdot b}{a}=b \tag{21}\\
& a: \frac{a}{b}=b \tag{22}
\end{align*}
$$

Wie fauten biefelber in $\mathfrak{F o r t e n ? ~ ફ e i s ~} \$ 17$. Batben VII 2, 3.

§ 13. Multiplication unb Dibifian mit ©umutn und Differenzen.

$\mathfrak{B o r b e m e r f u n g : ~ S o l f e n ~ m e f r e r e ~ S a b l e n ~ b u r d i f ~ e i n e ~ o b e r ~ m e b r e r e ~ b e r ~ b i e t ~}$ Fedmungsoperationen mit einanber berbunben werben, to wirb wieber bie Nugabe ber Æeibenfolge ber $\mathfrak{B e r b i n b u n g e n ~ b u r d) ~ \Re l a m m e r n ~ n o ̈ t b i g . ~ S u r ~ B e r m e i b u n g ~ e i n e r ~}$
 unt Divifion ïberalf ber श्यbdition und Cubtraction borangetent $\mathfrak{z l}$ Lafjen, wofern niăt bas segentbeil burdi bie תlammern berlangt wirb, und im $\mathfrak{H e b r i g e n ~ a u d ~}$ Fier bie Rlammern wegzulafien, fobalb bie burdif fie beftinumte Meifenfolge bie ber eingelnen Zatblen if.

Mant fiffreibt affo z. ঞ. (a-c) $+\left(\frac{b}{d}\right)$ türzer $a \cdot c+\frac{b}{d}$, ftatt $(a \cdot b) \cdot c$, $a \cdot b \cdot c$, bagegen $a \cdot(b+c) \cdot d$, u. f. w.
(23)

$$
(a+b) \cdot c=a \cdot c+b \cdot c
$$

(Fine ©umme wird multiplicirt, indem man jeden Sum= manden multiplicirt und die Sroducte abdirt.

Beweis: $(a+b) \cdot \varepsilon=(a+b)+(a+b)+(a+b)+\cdots \cdot$

$$
\begin{aligned}
& =a+a+a+\ldots+(b+b+b+\ldots), \\
& =a \cdot c \\
& +b \cdot c .
\end{aligned}
$$

$$
\begin{equation*}
(a-b) \cdot c=a \cdot c-b \cdot c \tag{24}
\end{equation*}
$$

Heberjeß̧ung in Worte und Beweiß ähnlidy, wie vorger.

$$
\begin{equation*}
\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c} \tag{25}
\end{equation*}
$$

©ine Summe wirb bivibirt, indem man jeben Summan= Den Dividirt, u. f. w.

$$
\begin{equation*}
\frac{a-b}{c}=\frac{a}{c}-\frac{b}{c} \tag{26}
\end{equation*}
$$

§n Worten äbnlid), wie bei (25).
Beweis: $\frac{a+b}{c}$ ift die 3 ahl, meldje mit c multiplicirt $a+b$ giebt.
அadi) (23) ift $\left(\frac{a}{c}+\frac{b}{c}\right) \cdot c=\frac{a}{c} \cdot c+\frac{b}{c} \cdot c=a+b$. 2tebrlid für (26).

Sebrauç boppelter शorjeidifen, um Formelt, wie (23) und (24) ober (25) und (26) in eine zulammengufaifen:

$$
(a \pm b) \cdot c=a \cdot c \pm b \cdot c ; \frac{a \pm b}{c}=\frac{a}{c} \pm \frac{b}{c}
$$

Ultgefeynt ift

$$
\begin{equation*}
a \cdot c \pm b \cdot c=(a \pm b) \cdot c \tag{27}
\end{equation*}
$$

D. h. Froducte, die einen gleiden Factor Gaben, werben abdirt (\ddagger ubtragirt), indem man bie nidy gemeinidaftliden Factoren abdirt (\ddagger ubtrahirt) und bie Summe (Differenz) mit Dem gemeinforaftliden Factor multiplicirt.

Beweis umgetefirt, wie bei (23) und (24).
Man nennt dies baş 2tbiondern bes gemeinidaftlidjen Factorßิ.

$$
\begin{equation*}
\frac{a}{c} \pm \frac{b}{c}=\frac{a \pm b}{c} \tag{28}
\end{equation*}
$$

§n Morten？－Berweiß̉？
Die Formelt（23）－（28）Yaffet fitid burdy Wiederbolung zu folgen＝ Den Säken erweitern：

Cinte Summe bon beliebig vielen Summanden wirb multiplicirt，int＝ Dem man jeben Summanden multiplicirt und Die einzelnen \＄robucte abdirt． $(a+b+c+d+\ldots) \cdot m=a m+b m+c m+d m+\ldots$

Ein Folynom wird mit einer Sabl multiplicirt，indem man jedes ©fied mit Derfefben multiplicirt uno die eingelnen ßrobucte in Derjelben Reifenfolge，wie borker bie eingelnen ©flieder，abdirt und fubtrabirt．
（Ein Solynom mird burd eine Bahl Dividirt，indem man jedes © Clied Durd Dieflbe Divibirt und Die eingelnen Duotienten in Derfetben Feiben＝ forge，wie borker Die（stiteder，adoirt und jubtrakith．
（Ein Wolynom aus beliebig bielen Froducten，Die einen gemeinjafaft＝ lidjen Factor haben，ift gleid Dem Frobuct aus Diefem Yeģteren Factor und Dem auf entipredjende Weife aus ben nidyt gemeinidjaftlidjen factoren gebildeten Solynem．
（Ein Solynom von beliefig bielen Quotienten，weldue Denfelfen Divitor haben，ift gleid Dem auf entiprediende Weife aus Den Divibenden gebildeten Wolynom，Dividirt Durdi Den gemeinidaftliden Divifor．
§erner folgt auß（23）und（24）Durd wiederbolte 2tnwendung：

$$
\begin{align*}
& (a+b) \cdot(c+d)=a \cdot c+b \cdot c+a \cdot d+b \cdot d, \tag{29}\\
& (a+b) \cdot(c+d)=a \cdot c+b \cdot c+a \cdot d-b \cdot d \\
& (a-b) \cdot(c+d)=a \cdot c-b \cdot c+a \cdot d-b \cdot d \\
& (a-b) \cdot(c-d)=a \cdot c-b \cdot c-a \cdot d+b \cdot d,
\end{align*}
$$

D．5．Summen，beziefungるmeife Differenzen werben mit einander multi＝ plicirt，indem man jebes Sflied des einen Factors mit jedem ©sfiede Des anderen multiplicirt und jebes einzelne Froduct mit Den übrigen burd 2tobition ober Durd Subtraction verbinbet，ie nadibem feine beiben
 bei wirb ba，wo fein Beiden vorbergejt，Dab Beiden + angenommen．）

Beweiz：$(a+b) \cdot(c+d)=(a+b) \cdot c+(a+b) \cdot d=$ $a \cdot c+b \cdot c+a \cdot d+b \cdot d$, u．ј．w．

Erweiterung biefer Regel auf Broducte beliebig vieler Summen oder Differenzen．

Erweiterurg berfelben auf Frobucte von Bolynomen．
2

$$
\begin{align*}
& (a+b) \cdot(a+b)=a \cdot a+2 \cdot a \cdot b+b \cdot b, \tag{30}\\
& (a+b) \cdot(a-b)=a \cdot a-2 \cdot a \cdot b+b \cdot b, \\
& (a+b) \cdot(a-b)=a \cdot a-b \cdot b .
\end{align*}
$$

§eis § $14,16,19$. Barbey VI， $37-50,58-110,128-144$. VII $40-47$. VIII．$\times 1-4$ ．

§ 14．刃心ultiplication unb Dibifinn mit Brabucten unb Duotienten．
 $$
\begin{equation*} (a b) c=(a c) b=a(b c) \tag{31} \end{equation*}
$$
 $$
\begin{equation*} a(b c)=(a b) c=(a c) b \tag{32} \end{equation*}
$$

D．G．ein Sroduct fann mit einer $3 \mathfrak{a h l}$－oder eine $3 \mathfrak{a b l}$ mit einem Srobucte－multiplicirt werben，indem mandie ein＝ zelnen Factoren in beliebiger \Re eihenfolge mit einander multiplicirt．

Beweiz：$(a b) \cdot c=a b+a b+a b+\ldots(c \mathrm{mal})$ ，voer паム $)$ 2以bjonderung Des gemeinidaftliden Factore b ，
$(a+a+a+\ldots(\mathrm{c}$ mal $)) \cdot b=(a c) b$ ，jowie nad 2 2bjonderung Deş gemeinifiaftliden Factors a ，

$$
a \cdot(b+b+b+\ldots(c \operatorname{mal}))=a \cdot(b c)
$$

und umgefegrt．
（fweiterung（Durd）Wiederfolung）：Jn einem कrobuct von mefreren Factoren（oder Broducten）Dürfen bie factoren in beliebiger Reikenfolge multiplicirt werben，z \mathfrak{B} ．
$(a b) \cdot(c d)=(a c) \cdot(b d)=(a d) \cdot(b c)=a \cdot(b \cdot c \cdot d)=\mathfrak{u} \cdot\lceil\cdot w$.
Onmerfung 1： $\mathfrak{I n}$ ber Regel orbnet man bie unbeitimmten Factoren alpha＝ betiid，und wenn neben ifnen ein beftimmter factor borfommt，io fest man biefen als Eoefficienten voran．

子afll ber factoren，子．B．$a \cdot a=a^{2}, a \cdot a \cdot a=a^{3}$ ．Der थusbruč $a^{\text {b }}$ Gei巨t eine

$$
\begin{equation*}
\frac{a \cdot b}{c}=\frac{a}{c} \cdot b=a \cdot \frac{b}{c} \tag{33}
\end{equation*}
$$

Wie lautet Dieje formel in Worten？Bemeis：$\frac{a b}{c}=$
$\frac{a+a+a+\ldots(b \mathrm{mal})}{c}=\frac{a}{c}+\frac{a}{c}+\frac{a}{c}+\ldots(b \mathrm{mal})=\frac{a}{c} \cdot b$,
Mnd $\frac{a \cdot b}{c}=\frac{b+b+b+. .(a \mathrm{mal})}{c}=\frac{b}{c}+\frac{b}{c}+\frac{b}{c}+. .(a \mathrm{mal})=a \cdot \frac{b}{c}$ ．
Erweiterung：Ein $\mathfrak{F r o b u c t}$ von beliebig vielen Factoren fann bivibirt werben，indem man einen Factor Dividirt $u n d$ Den $\mathfrak{Q u p t i e n t e n}$ mit ben anderen factoren multiplicirt．

$$
\begin{equation*}
\frac{a}{b \cdot c}=\frac{a}{b}: c=\frac{a}{c}: b \text {. §n Worten? } \tag{34}
\end{equation*}
$$

Beweiz：$\frac{a}{b \cdot c}$ bedeutet Die Bahl，meldje mit $b \cdot c$ multiplicirt a zum Froduct giebt．©̧ if aber $\left(\frac{a}{b}: c\right) \cdot(b c)=\left(\frac{a}{b}: c\right) \cdot c \cdot b=\frac{a}{b} \cdot b=a$ ， und $\left(\frac{a}{c}: b\right) \cdot(b \cdot c)=\left(\frac{a}{c}: b\right) \cdot b \cdot c=\frac{a}{c} \cdot c=a$ ．

Grweiterung non（34）für ein Frobuct bon beliebig vielen Factoren ala શemmer．

Werbindutg Der Formeln (33) und (34) und Erweiterung:
Soll ein Frobuct aub beliebig bielen Factoren Durd ein anderes Froduct auß beliebig bielen Factoren Dibibirt merben, io Darf man ieden Factor bes Divijors in einen beliebigen einzefnen factor bez Dividenden bivibiren.

$$
\begin{equation*}
\frac{a}{b} \cdot c=\frac{a \cdot c}{b}=\frac{a}{b: c} \cdot \Im \mathfrak{Y n} \text { Worten? } \tag{35}
\end{equation*}
$$

Beweis Durd Hmtefrung von (33), DDer burd M Multiplication ber Drei Seiten mit Derfelben Babl b.

$$
\begin{equation*}
a \cdot \frac{b}{c}=\frac{a \cdot b}{c}=\frac{a}{c} \cdot b . \text { §n Worten? } \tag{36}
\end{equation*}
$$

$\mathfrak{B e w e i z}$ Durdid Umtefrung von (33), Doer Durd Mhuttiplication ber Drei ©eiten mit c.

$$
\begin{equation*}
\frac{a}{b}: c=\frac{a: c}{b}=\frac{a}{b \cdot c} \text {. In Worten? } \tag{37}
\end{equation*}
$$

$\mathfrak{B e w e i s ~ b u r d y ~ M u l t i p l i c a t i o n ~ D e r ~ b r e i ~ S e i t e n ~ m i t ~ c . ~ B e r g l . ~ (3 4) . ~}$

$$
\begin{equation*}
a: \frac{b}{c}=\frac{a}{b} \cdot c=\frac{a \cdot c}{b} . \Im \mathfrak{M} \text { Morten? } \tag{38}
\end{equation*}
$$

$\mathfrak{B e m e i s}$ Durd Miultiplication ber brei Seiten mit b.
\mathfrak{U} nmerfung 3: $\mathfrak{Y u s}$ (35) und (37) folgt: Multiplicirt mant ben Divibeno eines suotienten mit einer Zably, to wirb ber Quotient eben to viele mal größer, multiplicirt man aber ben Divifor, to witro ber Quotient to wiele mal fleiter. Divibirt man ben Divibent, fo wirt ber Quotient eben fo viele mal fleiner, bivibirt man ben Dibijor, fo wirb ber ఇuotient eben fo viele mal größer. §ieraus folgt weiter:

$$
\begin{equation*}
\frac{a}{b}=\frac{a \cdot n}{b \cdot n}=\frac{a: n}{b: n} \tag{39}
\end{equation*}
$$

b. W. Der Werth eines ®uotienten bleibt unveränbert, wenn man feinen Dividend and feinen Diviformit derfelben 3 abr multiplicirt, oder went man beide Durdj dejelbe $3 a \mathfrak{L}$ Dibi= Dirt. (Erweitern uno §eben.)

Anmendung Der Regel (39) um einen Quotienten in einen folden mit anderem Divijor zu verwandeln. (§emeinidaftlidige Diviforen; flein=
 ergiebt fidid:

$$
\begin{equation*}
\frac{a}{b} \pm \frac{c}{d}=\frac{a \cdot d \pm b \cdot c}{b \cdot d} \tag{40}
\end{equation*}
$$ $a \pm \frac{b}{c}=\frac{a \cdot c \pm b}{c}$, und umgefefirt. In Worten? Beweis?

$$
\begin{equation*}
\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d}=\frac{a}{b}: \frac{d}{c} \cdot \Im \mathfrak{n}^{\wedge} \text { Worten? } \tag{41}
\end{equation*}
$$

Beweiふ：$\quad \frac{a}{b} \cdot \frac{c}{d}=\left(\frac{a}{b} \cdot c\right): d=\frac{a \cdot c}{b}: d=\frac{a \cdot c}{b \cdot d}$ ，oder $\frac{a}{b} \cdot \frac{c}{d}=\left(\frac{a}{b}: d\right) \cdot c=\frac{a}{b}: \frac{d}{c}$ ．

$$
\begin{equation*}
\frac{a}{b}: \frac{c}{d}=\frac{a: c}{b: d}=\frac{a}{b} \cdot \frac{d}{c} \cdot \Im \mathfrak{\Im n} \text { Worten? } \tag{43}
\end{equation*}
$$

$\mathfrak{B e m e i z}$ त̈frlid mie vorfer．
Ђeis § 15，21－24，18，19，刃r．30－54．ßarbey VI 1－28，51－57，111－127； VII $1,4-13,28-39$ ；IX，X ．

§ 15．Multiplicatian unt Dibifion mit sulf，algebraijaen 3 ahlen иno algebraijden Summen．

Die Crflarungen Der ßegriffe Multiplication und Divifion in $\$ 10$ uno $\$ 11$ jeछ̧en voraus，Daß̉ Der Mtultiplicator，bezm．Der Divijor ober Duotient eine abjolute Sabl fei，waifrend Der Mhltiplicand und（Dibidenduc ftets aud algebraija）Sahfen ober 刃hull fein fönen．Man fann nadif jenen $\mathfrak{D e f i n i t i o n e n t ~} \mathfrak{z}$ ．B．wofl bon einer Summe von b Summanden reden， bon benen jeder gleid Natll ift，nidit aber bon einer Summe von 0 Sum＝ manden gleid）a ．Mit diefer（Einidurantung aber gelten jene Erflärungen und Die aus ifnen abgeleiteten Refräße über Broducte und Suotienten int Hebrigen ganz allgemein．

Da nun ber Werth Des Wrobuctふ $a \cdot b$ fidi um ben Multiplicand a berfleinert，went man Den Multiplicator um 1 abnefmen läbt，und man Durd conjequente Fortjeşung Diejes Berfahrens nodi über Die Summe bon zwei Summanden oder $a \cdot 2$ hinaus auf $a \cdot 1=(a+a)-a_{4}$ $a \cdot 0=a-a=0, a \cdot(-1)=0-a=-a, \mathfrak{u} . j$ ．10．gelangen würde，io if eß geftattet，Den Begriff bes Froductes daEin zu erweitern，daß

$$
\begin{aligned}
& a \cdot 1=a \\
& a \cdot 0=0 \\
& a \cdot(-b)=-a b
\end{aligned}
$$

gejegt weroen folle．Dieje neuen Definitionen ftogen bie früfern，für abjolute Werthe Des Milltiplicatorß geltenden，nidit um；Die aus Diejer Iebteren abgeleiteten Erflärungen und ©sejebe Der nadfolgenden Bara＝ graphen bleiben alio in ifrer ©fültigleit beiteben，aber fie ermeitern fiad mun ebenfalls auf Den neuen，alfgemeineren Begriff und gelten aljo alls gemein．Jnsebefondere ergeben fíd Die folgenden Säķe：

$$
\begin{equation*}
0 \cdot a=a \cdot 0=0 \tag{44}
\end{equation*}
$$

$\mathfrak{B e m e i s : ~} 0 \cdot a=(b-b) \cdot a=b \cdot a-b \cdot a=0$ ．

$$
\begin{equation*}
0 \cdot 0=0 \tag{45}
\end{equation*}
$$

$$
\begin{equation*}
\frac{0}{a}=0 . \mathfrak{B e w e i z : ~} \frac{b-b}{a}=\frac{b}{a}-\frac{b}{a}=0 \tag{46}
\end{equation*}
$$

$\frac{a}{0}$ bedeutet die Bafl，weldje mit \Re null multiplicirt zum Wroduct a giebt．

Mun if bas ærobuct jeber Dentbaren 3afl mit 0 mieder gleidy 0 , alfo ift $\frac{a}{0}$ mur Dann eine Dentbare Safl, menn $a=0$ iit, und zwar fann $\frac{0}{0}$ jeDe Befiefige Bahk bebeuten. Wit bagegen a nidyt gleid Null, io fann man $\frac{a}{0}$ al3 cin Beiden für cine unbentifar groge Bafl betradten (ba jebe Dentfare Sahl zu tlein ift). - Man pflegt eine forlde Durdu ∞ zu bezeidgnen. Da aber tweber mit einer umenblid groben, nod mit Der ganz unbeftimmten Bahl $\frac{0}{0}$ gereefnet merben fann, io forgt, DaÉ man nie Durđ) Nulf divibiren barf.
(47)

$$
\begin{aligned}
& (+a) \cdot(+b)=+a b, \\
& (\pm a):(\pm b)= \pm a b, \\
& (-a):(\pm b)=-a b, \\
& (-a) \cdot(-b)=+a b,
\end{aligned}
$$

D. G. algebraijde Bahlen werben multiplicirt, indem man igre (Slieder multiplicirt uft dem æroduct Das Beiden + oder - gieft, ie nadidem Die factoren gleide oder beridiedent Borzeiden baben.

Bemeiz Durd) Die formeln (29) für $a=0, c=0$.
Die Ermeiterung von (47) auf Frobucte beltebig bieler alge= braijder Sahlen ergiebt, baß man das ßroduct fämmtlidjer Bfieder mit Dem Borzeidjen + verfieft, wemn Die $\mathfrak{A} \mathfrak{H z}_{\text {zafl }}$ Der negativen Factoren eine gerabe, Dagegen mit - , wemn fie eine ungerade ijt.

$$
\begin{align*}
& \frac{+a}{+b}=+\frac{a}{b} \tag{48}\\
& \frac{+a}{-b}=-\frac{a}{b} \\
& \frac{-a}{+b}=-\frac{a}{b} \\
& \frac{-a}{-b}=+\frac{a}{b}
\end{align*}
$$

Jn Moxten? Beweiふ: $\left(+\frac{a}{b}\right) \cdot(+b)=+\left(\frac{a}{b} \cdot b\right)($ nad 47$)=$ $+a$, aljo if $+\frac{a}{b}$ Die Bahl, weldje mit $+b$ multiplicirt $+a$ giebt u. 1.m.
$\mathfrak{4}$ แื (47) folgt ferner: ©ine algebraijde Summe wirb-mit einer Zathl multiplicirt, indem man jedes Glied berjelben mit ihr multiplicirt, Das Borzeiden jèes einzelnen Froductes nadi (47) beftimmt, unt Die eingeften Froducte abdirt.

Maltiplication zweier afgebraiider Summen Duraj 2tnmenoung won (29) und (47). Yusbefnutg auf ein Sroduct bon mefr als zwei alge= braididen ©ummen.
 jedent Summanden nady（48）butd biefelbe Dividirt und bie einzelnen Quotientent abbitt．

Ђеія § $26,3-9,10 \delta-\mu, 21-33,34 \delta-v, 35 \eta-44$ ．Barbet VI $29-36$ ， VII 14－22，25－27．

§ 16．Dic Cins unt bie gebrodenen Bablen．

Seģt mant in Dem 玉uotienten $\frac{a}{b}$ für a und b beliebige beftimmte Sablen eit，jo find Drei Falle möglidid：1）a ift gleidj Dem Werthe eine马 Froducta，Defien einer fractor b iff 2）a ift gleidy $b ; 3) b$ ift nidut in a als Factor entbalter．Fur in erjten Falle Gat nad）unjerer bisherigen $\mathfrak{Z} u$ ffajiung Der Suotient einen Sinn．Wir fönnen aber（äbnlid），wie früber bei ber Differenz）bie in $\$ 11$ gegebene Definition Des Duotienten auf
 ftanden werben foll，Defien Srobuct mit b gleidí）a ijt．Silt mut $a=b$ ， fo ift für $\frac{a}{b}$ die（Einkeit aut fesen，oder es ift

$$
\begin{equation*}
\frac{a}{a_{i}}=\frac{b}{b}=1 \tag{49}
\end{equation*}
$$

Denn foll eine 3 abl gejudt werben，mit weldjer a unultiplicirt werben muß，umt Das Srobuct a zu erbalten，fo tamt biefe 3 abll mut gleidy 1 feit．
（Ex lant nảmliá bie Sahl ats Die Summe ibrer Einkeiten， $1+1+1+\ldots$ betradftet werben，ober es if $1 . a=a$ ，und zufolge ber Defintiont int Strfang hes $\$ 15$ ift baber aud
（50）$\quad 1 \cdot a=a \cdot 1=a$ ．
Man tann alio auda umgefefyt jeber Babl Den Factor 1 zufügen．
Jür Daş Redinen mit ber Einbeit merfie mant nody bie aus ben früberen Regeln für Diefen bejonderen Fall folgenden：

$$
\begin{gather*}
\frac{a}{1}=a \tag{51}\\
1 \cdot 1=1,1: 1=1 \ldots
\end{gather*}
$$

Heberjetaugen in Worte und Betweife reidit．
Wit ferter ber Divijor b in Dem Dividenden a weder als Factor ent Galtent，nod gleidy a ，fo erbălt $\frac{a}{b}$ Die Bedeutung einer neuen $3 a k j f o r m$, welde wir eine gebrodgene 3 aht ober einen B rud nemmen．

In allen Fiallen nämlid，in melden Die Einkeit fiak in trenere Thyile zerlegen läßt，fant mant fīd aud jedeß Bielfad）：Der（Eingeit，z．B．a （Einbeiten，in b gleide Theile getbeilt Denten，und es ift flar，Dafj bant ein jolder Theil，b mal genommen，gleid）a（Einbeiten ift，dás alfo jeber Derartige Theil Der Gretärung bes 刃uotienten $\frac{a}{b}$ entipridit．

Regt man 3. B. 5 Sinien $A B, B C, C D, D E, E F$, beren lebe gleid ber Einbeit (1^{4} ob. bgl.) angenommen ift, an einanber und theilt bann bie ganze \&inie $A F$ in brei gleidje Zheile $A X, X Y, Y C$, io ift ieber biefer Theile gleidf $\frac{5}{3}$ ber Cinnjeit.

Man ergalt daffelbe Rejultat, wem man zuerit die Ceinheit in bleidje Theile theilt und dann a jolder Theile vereinigt.

Denn bentt man fixi jebe von a Einbeiten $A B, B C$ u. f. wo. in b gieide Theile getheilt, fo erbălt man int Ganzen $a \cdot b$ fleinere Theile, und vereinigt man a foldfer fleineren Theile mit einanber, fo hat man wieber ben bten Theil ber $a \cdot b$ Theile ober ber a gröberen Eingeiten.
(Ein $\mathfrak{B r u d}$ bedentet afjo einen ober mefirere Theile won einer boer mefreren in gleidje Theile getheilten ©iröpen.
 gebrodjene Bablen, dem biefelben find mur aus der audi für biefe gelten= Den alfgemeinen Definition Des̉ Suotienten abgeleitet.

Subbejondere merfe man nod die Megeln:

$$
\begin{gather*}
a \cdot \frac{1}{b}=\frac{a}{b} ; a: \frac{1}{b}=a \cdot b ; \frac{1}{a}: b=\frac{1}{a \cdot b} \tag{52}\\
1: \frac{a}{b}=\frac{b}{a} ; 1: \frac{1}{a}=a \\
\frac{1}{a} \cdot \frac{1}{b}=\frac{1}{a \cdot b} ; \frac{1}{a}: \frac{1}{b}=\frac{b}{a}
\end{gather*}
$$

Ueberjeßungen in Worte und Beweife reidt. ફృeiz § 20.

§ 17. alfgemeine Divifion algebraiidider ©ummen.

Jeder ®uotient fann gleid ber Summe aus einer belfe bigen 3 ahl und einem Demerferen gleidnamigen Quotienten
 erfteren minus bem Froduct aus der beliebigen $2 a \mathfrak{l}$ und Dem Divijor, oder

$$
\begin{equation*}
\frac{A}{B}=x+\frac{A-B x}{B} \tag{53}
\end{equation*}
$$

$\mathfrak{B e q e i 马} x+\frac{A-B x}{B}=x+\frac{A}{B}-\frac{B x}{B}=x+\frac{A}{B}-x=\frac{A}{B}$.
2nmendung diejes Sab̧es zur Divition zweier beliebiger Baflen oder Bablenverbindungen. Die Bahl x farn jeben $\mathfrak{S e r t h}$ erkalten; in Der §rariz wählt man bie bem Werthe von $\frac{A}{B}$ nädjite, fleinere ganze Bahl.
$\mathfrak{H m}_{\mathrm{m}}$ zei algebraijde Summen zu divibiren, orbne man ife zunädit übereinftimmend (nad) faffenden oder fteigenden $\Im_{0} 0=$
tenzen eitter ©fröbe, alphabetiod od. Dgl.), dividire bant bag erfte Gried des Divifors it das erfe ©ried des Dividenden, utul= tiplicire Den gefundenen Theil=Quotienten $\left(q_{1}\right)$ mit Dent ganzen Divifor und fubtrakire bas Froduct von bem Divi= bendus. Man wiederhole diejes Berfahren, indem man das erfte ©fied des Divijors in Das erfe des jo eben erbaltenen, georbneten Reftes dibibirt, Den gefundenen zweiten Theil= Quotienten $\left(q_{2}\right)$ mit Dem ganzen Dibifor multiplicirt und bas Froduct von bem vorker ergaltenen Refte fubtrakirt. Man fahre in diejer Weife fort, bis entweder eine Subtrace
 $\mathfrak{m o g}$ lid ift. Der Quotient Der beiben algebraijden Summen ift bant gleid ber (algebraijden) Summeder gefundenen Theil= Quotienten, im legteren Farke vermegrt um Den zuletat ge= bliebenen \mathfrak{R} eft, Dibidirt Durd Den Divijor.

Der Beweiz folgt aus einer wiebergolten Atnmendung Der Formel (53). Sind A und B bie zu bivibirenden Summent $r_{1}, r_{2}, r_{3} \ldots$. Die eingelnen Refte, to ift

$$
\frac{A}{B}=q_{1}+\frac{A-B q_{1}}{B}=q_{1}+\frac{r_{1}}{B} ; \frac{r_{1}}{B}=q_{2}+\frac{r_{1}-B q_{2}}{B}=q_{2}+\frac{r_{2}}{B}
$$

u. โ. f. bia $q_{n}+\frac{r_{n}}{B}$, afio $\frac{A}{B}=q_{1}+q_{2}+q_{3}+\ldots+q_{n}+\frac{r_{n}}{B}$. Segt Die Divifion auf, fo if $r_{n}=0$.

Sufak 1: 趹t fíd Der Dividend jo umformen, Dafß ber Divifor als ein factor befielben erideint, io findet man Den Suotienten am eint fadiften nade $\$ 12,(21) ;$ z. \mathfrak{B}.

$$
\begin{gathered}
\frac{a p-b p+a q-b q}{a-b}=\frac{(a-b) \cdot p+(a-b) \cdot q}{a-b} \\
=\frac{(a-b)(p+q)}{a-b}=p+q
\end{gathered}
$$

3uiak 2: ©ekt bie Divifion nidyt auf, io fant man biejelbe be= liebig weit fortjeßen. - Bitbung unenolidjer Æeiben, z. B.

$$
\frac{1}{1-q}=1+q+q^{2}+q^{3}+\ldots
$$

$$
n+1
$$

Yngabe bes Ergänzungegliebes $+\frac{q}{1-q}$ beim $\mathfrak{H b b r e d j e n ~ b e r ~ \Re e i b e . ~ B e r g l . ~}$ § 39 über (Eontbergent untollidier Æeibert.
§eis § 25. ßarbet VII 48-91.

> Mnhang 1. Sonden sroportionen. Seiz $\$ 31-33$.

1. Ein $\mathfrak{B e r g a ̈ l t n i ~} \mathfrak{B}$ if nadd $\mathbb{1} 11$ ein Quotient zweier gleidartiger

 Den Dividendus a das erfte（filied，Den Divitor bas zweite Gfied and

2．Der Suotient eineふ Werbăłtnifies bleibt nac̆ $\$ 14$ ，（39）unver＝ ändert，went beide ©flieder mit derfelben Babl multiplicirt ober burdi Diefelbe Babl bivibirt werben．YHfe auf joldje Weife aus einem und Dent＝
 gleid，und zu jebem Sergältniß giebt es unzählig viele gleide $\mathfrak{F e r b a ̈ l t n i f f e . ~}$

श1mbendung fu Wegidaffung von Mennern in ben ©fliedern eines
$\mathfrak{B e r g a ̈ l t n i f f e s . ~} \frac{a}{m}: \frac{b}{n}=\frac{a}{m} \cdot m n: \frac{b}{n} \cdot m n=a n: b m$ ．
 zeidjen，wie z．B．$a: b=c: d$ ，Keipht eine Froportion（geometrijdide Sroportion；Werbăltnißgleiduung）．In Derjelben keigen a, b, c, d der Reibe nad．das erfte，zmeite，britte，vierte ©fied，$a: b$ Das̉ erfte，$c: d$ bas zweite $\mathfrak{B e r b a ̈ l t n i ́ s , ~} a$ und c bie Borberglieber，b und d Die §̌in＝ terglieder，a und d bie äuneren，b und c bie inneren ©flieber．

4．£ehriak：Jn jeber Froportion ift bas Froduct ber äuperen Sfieder gheid Dem Wroduct Der inneren（flicier．
$\mathfrak{B o r a u}$ 隹解g：$a: b=c: d$ ．
Begauptung：$a \cdot d=b \cdot c$ ．
Beweiß：Madet man Die ミuotienten $\frac{a}{b}$ und $\frac{c}{d}$ Durd Crmeiterung mit d ，begiefungămeife mit b ，gleidjnamig，fo ergălt mant $\frac{a \cdot d}{b \cdot d}=\frac{b \cdot c}{b \cdot d}$ ， und ba kier bie Diviforen einander gleid find，io muiffen aud bie Divi＝ Denden einander gleid jeint，ober es ift $a \cdot d=b \cdot c$ ．

Beifpiel： $2: 3=6: 9 ; \frac{2}{3}=\frac{2 \cdot 9}{3 \cdot 9}=\frac{18}{27} ; \frac{6}{9}=\frac{3 \cdot 6}{3 \cdot 9}=\frac{18}{27} ;$
$2 \cdot 9=3 \cdot 6=18$ ．
 Ducte der inneren slieder，Divibirt burd Das andere äubere；jedes intere （Blied ift gleid）Dem Froducte Der äußeren，Divibirt burd Das anbere intere．
 portion aus Den brei übrigen．

Beifpie（e：a） $5: 15=7: x, x=\frac{15 \cdot 7}{5}=21$ b） $11: 33=x: 6$ ， c） $13: x=5: 7$ ；d）$x: 9=10: 18$ ．

Zujak 2：Sind in einer Sroportion brei © Fiteder Den gleidffelligen Sliebern einer anderen Froportion gleid，to find aud bie vierten Eliteder einander gleid，ober：Sit $a: b=c: x$ und $a: b=c: y$ ，io ift $x=y$ ．

Grffarung：Sind in einer Proportion bie beiben auberen，ober find bie beiben interen Sfieder einander gleid，to beigt bie ßroportion eire ftetige，und bas gleidje ©flied das geometrifaje Mittel（bie
mittlere geometrifide Wroportionale）zwifiden ben beiven ungleidjen．Bei＝ ipiel：$a: x=x: b ; c: d=e: c$ ．

Zujak 3：工n einer ftetigen Froportion ift Das Suabrat ber mittleren Froportionale gleidy Dem Srobucte Der beiben anderen Gifieber，ober auß $a: x=x: b$ folgt $x^{2}=a \cdot b$ ．

5．Hmfelyrung Dew Lebrjazeß in 4：Jft Das Froduct zweier Zahlengleid dem Broduct zweier anderen Bahlen，fo ift iede Froportion ridtig，in melder die Factorencine biefer \mathfrak{B} ro＝ Ducte Die äuperen und Die Factoren Des anderen Die inneren （Slieder find．

Beweiふ：2tus $a \cdot d=b \cdot c$ forgt burd Divifion beiber Seiten mit $b \cdot d$ ，

$$
\frac{a d}{b d}=\frac{b c}{b d}, \text { voer } \frac{a}{b}=\frac{c}{d}, a: b=c: d
$$

 nen $\mathfrak{F r o p o r t i o n . ~}$
\mathcal{Z} โak： $\mathfrak{A} u \mathfrak{~ j e d e r ~ g e g e b e n e n ~ P r o p o r t i o n ~ Y a f f e n ~ f i d h ~ f i e b e n ~ a n d e r e ~}$ ridjtige Sroportionen Durd Bertauldung ifrer（Silicber ableiten；babei müffen סie äugeren（interen）©flieder entweber beibe äuß̧ere（innere） bleiben，voer beibe innere（ängere）werben．－Жนझ
1）$a: b=c: d$ folgt alfo：
5）$b: a=d: c$
2）$a: c=b: d$
6）$b: d=a: c$
3）$d: b=c: a$
7）$c: a=d: b$
4）$d: c=b: a$
8）$c: d=a: b$ ．
$\mathfrak{A n m e r f u n g}$ ： Bei benannten Sablen beadite man，bás mur gleidjbe＝

 4 Meter ： 8 Mieter．

6．Lehriak：Jn jeber froportion vergältitd Die Summe （oder die Differenz）Des erften $\mathfrak{H D}$ zweiten ©liedes zum erften oder zweiten Gliede，wie die Summe（oder die－ent＝ ipreffend wie borker gebildete－Differenz）Des Dritten und vier＝ ten ©ficdes zum dritten oder vierten ©fliede，D． \mathfrak{G} ．
ift $a: b=c: d$ ，io ift
$(a+b): a=(c+d): c$ иmD $(a-b): a=(c-d): c$ ，und $(a+b): b=(c+d): d, \min (a-b): b=(c-d): d$ ．

Beweiß：அৰৰ $\frac{a}{b}=\frac{c}{d}$ folgt $\frac{a}{b} \pm 1=\frac{c}{d} \pm 1$ oder $\frac{a \pm b}{b}=\frac{c \pm d}{d}$ ， oder $(a \pm b): b=(c \pm d): d$ ，und aus $\frac{b}{a}=\frac{d}{c}$ forgt $1 \pm \frac{b}{a}=1 \pm \frac{d}{c}$ ， ober $\frac{a \pm b}{a}=\frac{c \pm d}{c}$, oder $(a \pm b): a=(c \pm d): c$ ．

Зијав：Daber folgt aus $a: b=c: d$ aud．
$(a+b):(c+d)=a: c=b: d$ ，
$(a-b):(c-d)=a: c=b: d$ ，wno alio audy
$(a+b):(c+d)=(a-b):(c-d)$, oder $(a+b):(a-b)=(c+d):(c-d)$.

Wie lanten Diefe Säke in Worten?
7. Werden mehr ala zwei Werbältniffe cinander gleid) gejebst, fo ent= ftebt eine fortlaufende Froportion, 子. B. $a: A=b: B=c: C=$ $d: D, \mathfrak{u} . \mathfrak{j} . \mathfrak{w}$.

Dieferbe läß̈t fita aud in ber form:

$$
a: b: c: d: \ldots=A: B: C: D: \ldots
$$

[afreiben, wobei Das शerbätniß ie zweier (Stieder Der cinen Seite gleid Dem Bergältniz Der an Den entipredjenden Stellen ber anderen Seite felenden ©flieder ift. Der Bemeis folgt aus $\mathfrak{M r}$. 5 , Buf.

Zehriag: Jn einer fortlaufenden Froportion vergăt fid jebes aus allen oder einem Theil der Borderglieder ge= bildete Wolynom zu dem auf gleide Weife aus den entipre= denden Sintergliederngebildeten Wolynom, wie irgend ein $\mathfrak{B o r b e r g l i e d} \boldsymbol{z}^{\prime}$ jeinem Sinterglied, oder ift
$a: A=b: B=c: C=d: D=\ldots$, io ift
$(a \pm b \pm c \pm d \pm \ldots):(A \pm B \pm C \pm D \pm \cdots)=a: A=b: B$, u. ј.w.
Beweis: ©Eふ jei q Der Duotient Der jämmtliden einander gleidjen Werhältnifie, alfo $\frac{a}{A}=q, \frac{b}{B}=q$, u. ј. w., io ift $a=A \cdot q, b=B \cdot q$, u. โ. w., alfo

$$
\begin{aligned}
& \frac{a \pm b \pm c \pm d \pm \cdots}{A \pm B \pm C \pm D \pm \cdots}=\frac{A q \pm B q \pm C q \pm D q \ldots}{A \pm B \pm C \pm D \pm \cdots}= \\
& \frac{(A \pm B \pm C \pm D \pm \cdots) q}{A \pm B \pm C \pm D \pm \cdots}=q, \text { alfo auळ) gleid) } \frac{a}{A}=\frac{b}{B}, \text { u.i.w. }
\end{aligned}
$$

 Summe der $\mathfrak{B o r b e r g l i e b e r ~ z u r ~ © u m m e ~ D e r ~ § i n t e r g l i e d e r , ~ w i e ~ e i n ~ B o r b e r = ~}$ glied zu feinem §interglied.

Anmendung auf bie fogenannte ©efelfidaftas ober Bertheilung Redinung.

Der vorftegende Sak if ein pecieller Fall Des allgemeineren: Bilbet man eine algebraijaje Summe aus $\mathfrak{F r o b u c t e n ~ D e r ~ \mathfrak { B r b e r g l i e d e r ~ e i n e r ~ f o r t = ~ }}$ laufenden Broportion mit je einer beliebigen Bafl und bildet man jodann Durd) Mhuttiplication Der entipredienden §interglieder mit denferben Bablen und Berbindung der $\mathfrak{F r o d u c t e}$ mit einander auf gleide Weife, wie borker, eine zweite algebraifije Summe, jo verbält fidh die eritere Summe zur Yebteren, wie ein Borderglied zu feinem Finterglied, ober ift

$$
\begin{aligned}
& a: A=b: B=c: C=d: D, \text { po ift } \\
& \frac{a \cdot \alpha \pm b \cdot \beta \pm c \cdot \gamma \pm d \cdot \delta}{A \cdot \alpha \pm B \cdot \beta \pm C \cdot \gamma \pm D \cdot \delta}=\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}
\end{aligned}
$$

Bem eib ähnlid wie vorber.
8. Zekrias: Multiplicirt oder Dibibirt man Die gletd = fterligen ©fieder zweier - oder megrerer - Froportiontan mit einander, io birben bie Frobucte (oder Quotienten) in Derielben \Re eigenfolge wieder eine ridutige ßroportion.

Jit $a: b=c: d$ und $A: B=C: D$, io ift $a A: b B=c C: d D$ und $\frac{a}{A}: \frac{b}{B}=\frac{c}{c}: \frac{d}{D}$.

Beweis burd) $\mathbb{S} 14$, Sl. (42) und (43):

$$
\frac{a}{b}: \frac{A}{B}=\frac{c}{d}: \frac{C}{D} ; \text { ober } \frac{a: A}{b: B}=\frac{c: C}{d: D}, \mathfrak{u} . \mathfrak{f} . \text { m. }
$$

(Eine aus zwei ober mefreen Wroportionen Durd Maltiplication ber gleidjtelligen ©lieder entfandene Sroportion Weißt aus den uriprürglidjen zujammengejebt.

Зujak: Durd Wotenzirung alfer (flieder einer gegebenen Wropor=
 $a: b=c: d$ und $a: b=c: d$ folgt bie zuammengefeste Sroportion $a^{2}: b^{2}=c^{2}: d^{2}, \mathfrak{u}$. f. w.

Sit in einer Æeihe von Werhätnifien immer Das zweite Glito Des einen Dem erften ©fliede Deş folgenden Wergältniffeß gleidy, fo fagt man, Dáß biefe Berbältniffe eine Rette bilden.
\&ehrjats: Bilden Die erften Berbäftnifie von zwei oder mebreren auf einander forgenden Groportionen eine Rette, To berbalt fid das erfe Glied irgend einer diefer Sropor= tionen $\boldsymbol{z}^{\prime} \mathrm{m}$ zweiten Gliede irgend einer anderen, wie daj Froduct der britten slieder diefer beiden und aller zwifden ifnen fekenden Froportionen zu Dem Froduct Der vierten (slieder diefer beiden und aller zwifden ifnen fegenden Froportionen, ober ift

$$
\begin{aligned}
& A: B=f: g, \\
& B: C=h: i, \\
& C: D=k: l, \\
& D: E=m: n, \text { jo if }
\end{aligned}
$$

$A: C=f \cdot h: g \cdot i ; A: D=f \cdot h \cdot k: g \cdot i \cdot l$;
$A: E=f \cdot h \cdot k \cdot m: g \cdot i \cdot l \cdot n ; B: D=h \cdot k: i \cdot l$, u. f. w.
$\mathfrak{B e m e t}$ Durd Maltiplication ber einzelnen $\mathfrak{B r o p o r t i o n e n , ~ z . ~} \mathfrak{B}$.

$$
A \cdot B \cdot C \cdot D: B \cdot C \cdot D \cdot E=f \cdot h \cdot k \cdot m: g \cdot i \cdot l \cdot n,
$$

oder, da B, C, D ben (Sitiedern bes erften Werbältnifies gemeiniduaftlidje Factoren find,

$$
A: E=f \cdot h \cdot k \cdot m: g \cdot i \cdot l \cdot n
$$

Man jagt, Daş ßerbättnī $A: E$ fei auß Den Berbältnifien $f: g, h: i$, $k: l, m: n$ zufammengefegt.
\mathfrak{H} nwenoung auf die jogenannte zufammengefekte \Re Regel De Tri (Regula de quinque, de septem) und Die Rettenredinung.

Зufak 1: Jit $A: B=f: g, B: C=f: g$, io ift $A: C=f^{2}: g^{2}$, und man jagt, A ftebe zu B im quabratijden Werbältniß von $f: g$.

Cebenjo ergălt man aus $A: B=B: C=C: D=f: g, A: D=f^{3}: g^{3}$

Зuiak 2: Bitben aud bie zweiten Berbältnifie der Froportionen eine Rette, fo verbält fidy das effte \&fted jeber beliebigen biejer Bropor= tionen zu Dem zweiten SSItede jeder beliebigen anderen, wie Das britte Blied der erfteren zum vierten ©fiede der lekteren, oder ift

$$
\begin{aligned}
& A: B=m: n \\
& B: C=n: o \\
& C: D=0: p, \\
& D: E=p: q, \text { u. f. w., fo ift }
\end{aligned}
$$

$A: C=m: 0, A: D=m: p, A: E=m: q, B: D=n: p, \mathfrak{u}$. ј. . . .
9. Bertauidgt man in einem Berbältniß Die beiden ©flieder mit ein= ander, io fagt man, Dafielbe fei umgele ift $b: a$.

Swei Bablen a, b verkalten fid zu einander umgefefirt wie zwei anbere Bablen c, d, wern ibr Werbältniß gleid dem umgelejeften Ser= G Gältniß Der resteren, affo $a: b=d: c$ ift.

Sehriabs: Das umgefehrte Bergältní zweier Bahlen ift gleid Dem Wergätniß ber reciprofen Werthe diejer Zablen (0. h. Der Durd bivifion Der leģteren in 1 erhaltenen Bahlen), oder

$$
a: b=\frac{1}{b}: \frac{1}{a}
$$

Bewei, burdi ben Lebrjak in $\Re x .4 ; a \cdot \frac{1}{a}=b \cdot \frac{1}{b}=1$.
Daber fann man aud fagen: Swei Sablen verbalten fix zu einander umgetebrt wie zwei andere, beipt, Das Ferbältniß ber erferen ift gleid Dem Berbältniß Der reciprofen Werthe Der Ieţteren; $a: b=\frac{1}{c}: \frac{1}{d}$.
\mathfrak{A} nmerfung: 3 wei Größen A, B fethen zu cinanber im umgefefrten $\mathfrak{B e r}=$ Gältnib ber Quabrate zweier anberent Gröben a, b, beibt alfo:

$$
A: B=\frac{1}{a^{2}}: \frac{1}{b^{2}}=b^{2}: a^{2} .- \text { Beippile. }
$$

2trwendung auf bie jogenannte umgefeferte Regel be Tri.

> शnkang 2: Säge aub ber Bahlentehre. §еiz § $27,28$.

1. Die Zahlenlegre im engeren Sinne ift bie Zebre won Dent Ceigenidaften ber ganzen Baflen. Unter einer Bagl fidledtain wirb in Derfelbent fets cirre ganze 3 ahl werfanden.
$\mathfrak{S i t}$ eine $\mathfrak{Z a b l}$ a Daß Srobuct einer $\mathfrak{Z a b l} b$ mit einer zweitert ganzen Bafl m, if alfo $a=m \cdot b$, io heibt a ein Bielfades ober Multi= $\mathfrak{p h} \mathfrak{m}$ bont b, und b with ein Theiler (Divijor, Maß̃) von a genant. Man jagt audi, bie Babl a fei theilbar buraj b, oder b gehe in a auf.

Sif eine Babl a fein $\mathfrak{B i e f f a d j e s}$ einer anderen b ，jondern muß einem Fielfadjen $m \cdot b$ Der lebteren nody eine ganze Babl $\alpha<b$ hingugefügt werden，um a zu erbalten，io ift a burd b nidit theitbar．Bei der Divifion von a Durd b bleibt Dann Der Durdy b untheilbare \Re eit α ．

Sede Babl ift burd fid felfit und burd 1 theitbar．Bablent，weldje， auger Durd fid felbit und Durd Die（Einbeit，Durd feine Saht theitbar find， Geigen abjolute Brimzahlen，oder ßrimzablen ialledthitn．Bahlen，

Sablen，weldie burd） 2 theifbar find，beiBen gerabe，alle anberen ungerabe 3ablen．

Sit eine $\mathfrak{B a h l} h$ ein Theiler mebrerer Bablen a, b, c, \ldots, ift alfo $a=m \cdot h, b=n \cdot h, c=p \cdot h$ u．f．w．，To beiĝt h ein gemein＝ idaftlider Theiler，oder ein gemeinfafaftidjez Mar Der Dablen a, b ， c，．．．Bablen，weldje feinen gemeinidaftlidjen 马heiler（auter Der 1） Gaben，heigen relative Frimzahlen．

2．Zegriä be：1）Jit h ein Theiler zweier Zablen a, b ，jo if h aud ein Theiler ifrer Summe $a+b$ und threr פifferenz $a-b$ ．

Dent ift $a=m \cdot h, b=n \cdot h$ ，jo ift $a \pm b=(m \pm n) \cdot h$ ．
2以gemein：Sit h ein Theiler mefrerer $\overline{\mathfrak{Z a b j}} \mathrm{len}$ ，io ift h aum ein Theifer ihrer（arithntetifajen）Sunute，fowie eineß jeden auts derfelben gebitbeten æolynoms．

2）Sit h ein Theiler einer Babll a ，io if h aud ein Theiler eineß jeben $\mathfrak{B i e f f a d j e n t} b=m a$ won a ．

Denn ift $a=n \cdot h$ ，jo ift $b=m \cdot a=m \cdot(n h)=(m n) \cdot h$ ．
2agemein：Şat man eine Feibe von Bablen，in weldjer jebe ein Bielfadjes der nädffolgenden ift，to ift aud jebe frühere Babl ein 彐iel＝ fadies jeder ipäteren．

Sujag：Sif h ein Theiler von a ，jo ift audi）jeber Divifor son h ein foldjer von a ．

Anmerfung：Dagegen if ein Bielfadees eines Theilers h von a nidit notb）$=$ wendig aud ein Zheiler von a ，und ebenjo h nidit nothwendig auđb ein Theiler eines Diviliore von a ．

3）Die ©umme mehrerer Bablen a, b, c, d, \ldots ift Durd）eine $3 a b l t$ theifbar，wenn bie Summe ber Æefte，twelde bei Der Divifion der eingelnen Summanden burda h entiteben，burd）h theifbar ift．

Denn ift

$$
a=m \cdot h+\alpha, b=n \cdot h+\beta, c=p \cdot h+\gamma, d=q \cdot h+\delta,
$$ ［0．if $a+b+c+d=(m+n+p+q) k+\alpha+\beta+\gamma+\delta$ ．

Sif alio $\alpha+\beta+\gamma+\delta$ butd h theilbar，fo int aud $a+b+c+d$ Durdif h theifbar．（\＆．1．）

4）Die Differenz zweier Bablen ift burd h theibgar，wem die Differenz Der Refte，weldje bei der Divifion jener Bablen burdil h ent＝ frehen，gleid Null ift．

Denn ift
$a=m h+\alpha, b=n h+\beta$ ，fo ift $a-b=(m-n) k+\alpha-\beta$ ． $\alpha-\beta$ fanu，Da α und β flemer als h find，nidit Durib）h theilbar jein，
alfo muß $\alpha-\beta=0$ fein, Damit $a-b$ burde h theilbar fei, und um= getefert.
5) (6in Broduct $P=a \cdot b \cdot c \cdot d \ldots$ ift burd jeben feiner $\mathfrak{F a c t o r e n}$ theilfar.

Dent es ift
$P=a \cdot(b \cdot c \cdot d \ldots)=b \cdot(a \cdot c \cdot d \cdot)=c \cdot(a \cdot b \cdot d \ldots), \mathfrak{u} . \mathfrak{\uparrow} \cdot \mathfrak{w}$.
$3 \mathfrak{u}$ ak 1: Enthält eine $3 a \mathfrak{k l}$ meffrere Factoren $a, b, c \ldots$, nebent eimander, to ift fie audj-Durd das Broduct berjelben theilbar.

Зиfab 2: Sit eine Baht Durd ein Wroduct $a \cdot b \cdot c \ldots$ theitbar, fo ift fie aud Durd jeden factor beffelben theilbar.
6) Ein Broduct $P=a \cdot b \cdot c \cdot d$. : ift burd eine Bafl h theilbar, wenn bas Froduct der Refte, weldje bei ber Divifion Der einzelnen fractorent Durd h entifelfen, Durd h theilbar (oder gleidid N(ull) ift.

Denn ift
$a=m: h+\alpha, b=n \cdot h+\beta, c=p \cdot h+\gamma, d=q \cdot h+\delta, \mathfrak{u}$. . . w., fo ift
$a \cdot b=m n h^{2}+m h \beta+n h \alpha+\alpha \beta=(m n h+m \beta+n \alpha) \cdot h+\alpha \beta$, $a \cdot b \cdot c=(z h+\alpha \cdot \beta)(p h+\gamma)=(z p h+\alpha \beta p+z \gamma) h+\alpha \beta \gamma$ $=z^{\prime} h+\alpha \beta \gamma$,
$a \cdot b \cdot c \cdot d=\left(z^{\prime} h+\alpha \beta \gamma\right)(q h+\delta)=\left(z^{\prime} q h+\alpha \beta \gamma q+z^{\prime} \delta\right) h+\alpha \beta \gamma \delta$

$$
=z^{\prime \prime} h+\alpha \beta \gamma \delta, \mathfrak{u} .\lceil. \mathfrak{m} .
$$

 Fieft burdy h theifbar, jo ift audd bas ßroouct P nidet Durd h theiffar.
3. Legriak: Dividirt man bie fleinere bon zwei Baklen a, b in Die gröbere, jodann, wenn bei biefer Divifion ein \Re eft r_{1} bleibt, Diejen $\mathfrak{R e j}$ in den Divijor b, Den etwa Gier Gleibenden \Re Reft r_{2} wieder in Den vorkergehenden Divijor r_{1}, und fährt io fort, Bis Die Divifion cinmal aufgeht, io ift ber leģte Divifor r_{n} Daß̉ größ̄te gemeinidaftlidu) Más der Bablen a, b.

Beweis: Bezeiqunen $q_{1}, q_{2}, q_{3} \ldots$ Der ßeike nady die einzelnen Duotienten, ift alio

$$
\begin{gathered}
a=b \cdot q_{1}+r_{1} \\
b=r_{1} \cdot q_{2}+r_{2} \\
r_{1}=r_{2} \cdot q_{3}+r_{3} \\
\text { u. } \cdot \mathfrak{w} . \\
r_{n-2}=r_{n-1} q_{n}+r_{n}, \\
r_{n-1}=r_{n} \cdot q_{n+1},
\end{gathered}
$$

To ift r_{n} ein Theiler von r_{n-1} und folglide aud won dem Bielfaden $r_{n-1} \cdot q_{n}$ Der Leßteren $\mathfrak{Z a h l}$. Da jede $\mathfrak{B a h l}$ in fiad felbft aufgegt, io folgt weiter, Daß r_{n} aud ein Theiler von $r_{n-1} \cdot q_{n}+r_{n}$, D. i. von r_{n-2} ift. In Diefer Weife fortfabrend, findet man Der शeibe nadi, Daf r_{n} ein Theiler

(ex fei δ ingend ein anderer Theiler von a und b, to geht δ audi) in $b \cdot q_{1}$ und mitgin in $a-b \cdot q_{1}=r_{1}$ auf. Jolglidy ift δ aud ein Theiler
von $r_{1} \cdot q_{2}$ und mithin aud won $b-r_{1} q_{2}=r_{2}$. In Diejer Weife fortfabrend, findet man, bas δ ein Theiler für jeben Der Diviforen ift und jajlieflid, aud in r_{n} aufgeht. Dieraub folgt, daẼ δ nidy gröger ala r_{n}, mithin r_{n} ber größte gentenididaftlide Theiler von a unt $b i j t$.
$3 \mathfrak{u}$ ige: 1) Seber gemeinidaftlide Theiler zweier Zahlen ift zu= gleid ein Theiler bes größ̄ten gemeinídaftlidjen Divifors Derjerben. 2) Da jeber \Re eft fleiner alz Der vorkergebende \Re eft fein mū, fo bilden $r_{1}, r_{2}, r_{3} \mathfrak{u}$. โ. w. eine abnebmende Reibe, und eß mū mithint, wenn die Divifion nidgt fajon vorber aufgebt, zulest Der Feft 1 erideinen, Defien Divifion ftets aufgeft. Das vorftehende Berfahren führt afjo immer zu einem Siele. Sit Der Yebte Divifor 1, io find a unb b relative Srimzablen.
 zwei Daklen Den größten gemeinidaftliden Theiler zu judjen.

 zweien (a, b) berfelben, febse Diejen an bie Stelle Der beiben Bablen umb fuct) wieber zu zwei beliebigen Der mun vorkandenen \Re eibe bon 3 ablen h, c, \ldots den größ̄ten gemeinidaftlidjen Theiler. Man wiedertbole biefes Berfabren, bis man zuleßt auf eine einzige Babl gelangt; Dieje Leştere ift Die gejucfite.

Der Beweis gründet fidi Darauf, DaÉ jeber gemeinjdaftlidje Theiler zweier Bablen audi ein Divifor ibreß gräßten gemeimidaftliden Theikerz jein muk.
4. Zehrjab: Sind a, b relative Frimzahlen, und ift k eine belie= Bige britte Bahl, io if jeber gemeinidaftlidje Theiler won $a \cdot k$ und b aud) ein gemeinidaftlider styeiler von k und b.

Beweis: Wendet man Das in 3. angegebene Werfahren auf bie Zablen a, b an, für welde Gier $r_{n}=1 \mathrm{ift}$, und multiplicirt jede der bort gefildeten (fleidungen mit k, jo ergält man

$$
\begin{aligned}
& a k=b q_{1} k+r_{1} k, \\
& b k=r_{1} q_{2} k+r_{2} k, \\
& r_{1} k=r_{2} q_{3} k+r_{3} k
\end{aligned}
$$

\mathfrak{H}. f. \mathfrak{w}.

$$
r_{n} \cdot k=k
$$

Sit mun δ ein gemeinidaftlider Theiler von $a^{\prime} k$ und b, aljo aud ein Theiter von $b \cdot q_{1} k$, io ift δ audí ein Theiler bon $a k-b q_{1} k=r_{1} k$, affo aud bon $r_{1} q_{2} k$ und mitgin aude bon $b k-r_{1} q_{2} k=r_{2} k$. Jaibrt man io fort, io ergiebt fidid zuletgt, Das δ ein Theiler von $r_{n} k=k$ ift. OHflo geht δ in eb unto k auf.

Sufage: 1) Sino a und b relative Srimzablen, und ift k ebenfalls relative ßrimzafll zu b, io ift aud Das Wroduct $a \cdot k$ relative, 刃rimzably $z^{\text {bl }} b$. - 2) Sind a und b relative Srimzahlen, und ift $a k$ burdid b theil= bar, jo ift audik k burdj b theithar. - 3) 2angentein: Sit jede ber Bahlen a, b, c, d, \ldots relative Srimzabl zu ciner anderen $\mathrm{Bagl} \alpha$, io ift aud ibr Broduct relative Primzabl zu α, und 4) fitio $\alpha, \beta, \gamma, \ldots$ mefrere $3 \mathfrak{a b l e m}$, von benen jede relative ßrimzahl zu jeder Der Dablen a, b, c, d, \ldots itt,

a. b. c. a. . . - Wieraus folgt wieder atz bejonderer Fall: 5) Sind a und α relative Frimzahlen, io if aud jede ßotenz (vergl. $\$ 14$) von α relative Srimzagl zu jeder Fiotenz bon a. a.

 $2 \mathrm{~A}_{\mathrm{z}} \mathrm{abjl}$ von $\mathfrak{F r i m z a b l e n ~ D a r f t e l l e n . ~}$
 einen Theiler b, io ift b entweder felbit eine Brimaahl, oder hat wieder
 und da die Theiler b, c, \ldots eine \Re eihe abnehmender Zahlen bildent to
 (Denn märe ber legte Theiler feine Frimzahl, fo toinnte er nod einmal
 bon a, aljo a von Der form $p \cdot m$. (Entbeder ift mun m eine Srimzahl, und Dann if a bereits als ein Frobuct von Srimakflen bargeftellt, oder
 eine zweite Srimzabl p_{1}, io daj $m=p_{1} m_{1}$, aljo $a=p \cdot p_{1} \cdot m_{1}$ if. Diefelbe Sגlußreige wiedergolt fide mun, und da jede folgende der 3ablen
 einem nidit mefy in Factoren zerlegbaren Theifer gefangen. Dann it alio $a=p \cdot p_{1} \cdot p_{2} \cdots p_{n}$.

Da bieje Berlegung Der Bahl a in ßrimfactoren möglidjerweije mit veridicoener \mathfrak{A} neromung ber eingelnen Divifionen ausgeführt werden fann, jo ift nodi) 2) nadzutveifen, Dá jedes andere $\mathfrak{F r o d u c t ~} q \cdot q_{1} \cdot q_{2} \cdots q_{n}$, weldes man für a erbalten fann, mit bem erfteren übereimftimmt. Da nut $a=p \cdot p_{1} \cdot p_{2} \cdots p_{n}$ Durad q theifbar jeit muEx, jo folgt aus 4), Daß einer ber §actoren $p, p_{1}, p_{2} \ldots$ Durd) q theilbar jein muణ, ₹. B. p, und da p eine abjolute Srimzahl ift, io mu $\dot{B} q=p$ fein. Daker ift $q_{1} \cdot q_{2} \cdots q_{n}=p_{1} \cdot p_{2} \cdots p_{n}$, und man fann auf dieferbe Weife wie borber zeigen, Daß q_{1} mit einem ber Factoren p_{1}, p_{2}, \ldots identifd jein muß. Jndem man Dieje Sめlupweife wiederyolt, ergiebt fia, Daß jeder Factor, weldfer in Dem einen Frobucte ein= oder mebrere Male vortommt, ebenio oft in Dem anderen borfommen muß, und baß́ Dafer beibe Broducte - abgejeben von etwaiger WeridjeDenheit in Der Reibenfolge Der Fractoren - genau mit cinanber übereinftimmen müffen.
 2. Bereintigt mant alle $\mathfrak{F B r i m f a c t o r e n ~ e i n e r ~} \mathfrak{B a f l} a$, welde in berfelben in mefhrfadier
 p, q, t, \ldots Frimzablen fint.
6. Der grägte gemeinidaftlide Theiler mebrerer Bablen a, b, c, \ldots fant nut audj baburd gefunden werden, ban man jebe diefer Sablen in ibre Frimfactoren zerlegt. Daß Froduct afler Derjenigen Diefer Jactoren, meldje in fämmtlidjen Dablen a, b, c, \ldots voriommen, if Der gejudfte gemeinjidaftlidje Theiler. - תommen Brimfactoren in Derfetben Zabl wiederholt (auf einer अotemz) vor, fo erfält ber gefudte Theiler bie \notin leinfte $\mathfrak{A l n z a f})$ Derjelben, weldje vortommt.

Seder andere gemeinidaftlide Theiler mefrerer Baflen a, b, c, \ldots wito aus dem größten gemeinidaftliden Theiler m Derierben gefunden, wern man diejen in feine Srimfactoren zerlegt und alle möglideut Fro= Ducte aus zwei, Drei, Dder mefreren Derfelben bildet.

Das fleinfte gemeinidaftlide Wielfadie mefrerer Bablen (seneat= nenter, ફauptnemer in ber Bruduredfung) wiro gefunben, wemn man biefe Bablen in iffe \$rimfactoren zerlegt und aus Lesteren ein Frobuct bilbet, weldjes feben bon ithnen to oft enthălt, als bie $\mathfrak{Z a b l}$, in welder er am Gäufigften bortommt. Be= weife reidut.

2tnkang 3: 3ahlenifiteme.

1. Bur befferen $\mathfrak{H e b e r f i a t h}$ Der unendliden Reige won Saflen orbnet man biefelben in ©ruppen, Denen eine beftimmte Bafl, in Der §egel die

Man bezeidunet nämlidu mur bie neun erften 3ablen burd bejondere Bablzeiden (Biffern): 1, 2, 3, .. 9 und betradtet bie Begn ala eine neue (Einkeit Göberer Sromung, welde wieber burd) 1 bezeidnet, body zum Unteridied von Der urjprünglidjen Cinbeit um eine Stelle weiter nady Yints, als diefe, geidrtiben nird, mobei man bie leere Stelle redfte Durdil eine 0 auझaullt. Dehn folde Cinbeiten (5 undert) bitben mieder eine (FinGeit einer Göheren Dromung und werden ala foldje burd 1 in ber britten
 man weiter fu ben Einkeiten Der folgenden Dromungen, indem jede ber: felben gleid zefn (Eingeiten Der nädit nieberen Dromuty gered)net wirb.
 Einkeiten neun überfeigt, für jede zefn jolde Einbeiten eine Einbeit der nädjfen Dromung gefebt; 子. B. $23=20+3=2$ (Einkeiten Der erften Göberen Dromung und 3 EEinkeiten ber uriprüngliden $\mathfrak{A r t}$. Falla kierbet Die $\mathfrak{A} \mathfrak{n g}_{\text {gahl }}$ Der Einheiten Diejer Göheren Dromung wieber neun überfeigt, To mird für jede zebn foldjer Cintbeiten wieder cine Einbeit ber zweiten Göberen Dronung geidrieben, 子. B. $758=700+50+8$.

In biejer WGeife fann man beliebig weit fortidureiten und jebe 3abl aus ber unenoliden Reige Derjelben mit alleiniger §̧ülfe ber neun Biffern und Der $\mathfrak{R u l l}$ auకbrücfer.
2. Statt Der 3 abl zebuf fant jede beliebige andere $\mathfrak{A Y n a b l l} 1 \cdot a=a$ von urjprünglidjen Einkeiten als eine Efinheit ber eriten Göheren Dromutg angenommen werben, und eş find in Diefem Falle bie Potenzen bon a : 1. $a=a^{1}, a \cdot a^{1}=a^{2}, a \cdot a^{2}=a^{3}$, u. f. w. Die Cinbeiten Der G3beren Sromung. Die uriprïnglidje Einkeit wirb folgeredt als biejenige ber multen Dromung $\left(a^{0}\right)$ betraditet. Sede berartige 2 (norbmung ber Bablen= reibe wird ein $\mathfrak{Z a h l e n f y}$ tem genant; ie nad der Sirumbahl beipt Daffelbe ein zweitheiliges, Dreitheilfigez, - zehntheiliges, u. f. w. (Dyadi=

$\mathfrak{A} n \mathrm{mertungen}$: Sn jebent Guften werben bie boberen Einbeiten, alfoobie Fotenzen ber (Grutbzafl, burdic $10,100,1000$ u. f. w. bezeididet, und biefe 3 ablen

So find 子．B． $10,100,1000,10000$
füt bas byabifaje Gyitem ben ふablen 2，4，8， 16 für bas triabijhe Syftem ben इablen 3，9，27， 81 für bas efftheilige ©xitem ben Bahlen 11，121，1331， 14641 gleid）．

 （stundzabl gröber ift，müffen neut Sifiergeidjen eingefülyrt werbent，子．B．bei bem zwölftheiligen Syjtem Beiden für X und $X I$（etwa φ und ψ ）．

Sebe Syftemzabli if ein nadi abnebmenden झotenzen ber（Srumbzabl georonetes Folynom von Bielfadjen biefer Fotenzen und nur in vereinfadfer Form gefdrieben， inbem biefe $\mathfrak{F o t e n z e n ~ w e g g e l a f i e n ~ u n d ~ m u r ~ b u r d ~ b i e ~ S t e l l u n g ~ b e r ~ S i f f e r n ~ a n g e = ~}$ beutet fint．So bebeutet 子．B．Die 3afl 2384
im becabifden Syitem： $2 \cdot 10^{3}+3 \cdot 10^{2}+8 \cdot 10+4$ ， int neuntbeiligen：$\quad 2 \cdot 9^{3}+3 \cdot 9^{2}+8 \cdot 9+4$ ， im zwölftheiligen：$\quad 2 \cdot X I^{3}+3 \cdot \mathrm{XII}^{2}+8 \cdot \mathrm{XII}+4$ ．
3．Die $\mathfrak{A H f g a b e n : ~ 1) ~ e i n e ~ D e c a b i j d i e ~ B a h l ~ i n ~ c i n t ~ f o r d e ~ a u s ~}$ einemt anderen Syiteme，2）eine 3 abl aus cinem anderen Syfeme in eine becadijdje und 3）alfgemein eine Babl ans einem beliebigen in eine poldje auร einem anderen beltebigent Syfteme zu verwandeln，lafien fid）reidyt
 とöen，und fann Das Dazu einzujalagende Serfahren von dem $\mathfrak{2}$ afänger jelbitändig gefunden werden．

Beifpiele：1）Die becabifac Bahl 9837 zu verwanbeln
a）in eine foldje bes addttreiligen Syjtemb：
$9837=8 \cdot 1229+5 ; 1229=8 \cdot 153+5 ; 153=8 \cdot 19+1 ;$
$19=8 \cdot 2+3$ ，affo exjalt man 23155 ．
b）it eine bes breitheiligen Suftem：

$$
\begin{aligned}
& 9837=3 \cdot 3279+0 ; 3279=3 \cdot 1093+0 ; 1093=3 \cdot 364+1 \\
& 364=3 \cdot 121+1 ; 121=3 \cdot 40+1 ; 40=3 \cdot 13+1 ; 13=3 \cdot 4+1 \\
& 4=3 \cdot 1+1, \text { aljo } 111111100
\end{aligned}
$$

c）in eine bes zwölftheiligen Syitems：

$$
9837=12 \cdot 819+9 ; 819=12 \cdot 68+3 ; 68=12 \cdot 5+8, \text { aljo } 5839
$$

2）Die $\mathfrak{B a b I} 5839$ beฐ zwölftheiligen Gyftems in eine becabifitye zu verwandeln：

$$
\begin{aligned}
& 5 \cdot(12)^{3}+8 \cdot(12)^{2}+3 \cdot(12)+9=\{(5 \cdot 12+8) \cdot(12)+3\} \cdot(12)+9= \\
& \{68 \cdot(12)+3\} \cdot(12)+9=819 \cdot(12)+9=9837
\end{aligned}
$$

Ebento bie Babl 23155 bes adttheiligen Syftemts：

$$
2 \cdot 8+3=19 ; 19 \cdot 8+1=153 ; 153 \cdot 8+5=1229 ; 1229 \cdot 8+5=9837
$$ Gbenio bie $\mathfrak{Z a b l} 3213002$ Des vieribeiligen Syfems：

$3 \cdot 4+2=14 ; 14 \cdot 4+1=57 ; 57 \cdot 4+3=231 ; 231 \cdot 4+0=924 ;$ $924 \cdot 4+0=3696 ; 3696 \cdot 4+2=14786$.
3）Die Sabl 1206530 bes fiebentheiligen Syitems in eine foldie bes zwölftheifigen out verwandeln．

Man verwandele biejelbe zunädit in eine becabijde（153587）und jodann bieje in eine hes 子rölftheiligen Syftems（ 74×6 XI）．

Reibt，Elemente ber Silatbematie．I．
4. Die \Re Regeln für Das Reduen mit fyitematijajen Bablen Kafien fid) ebenfallz leidyt aus den für Wolynome geltenden ableiten.

AHf Zablen, welde in einer Fedimut verbunden merden jollen, müfinen Demfelben Syftem angeforen.

 3abl XI.

a) 124
3005
4310
11443
b) 9327 $\frac{6831}{26 \text { XI6 }}$

c) | 5327 | d) |
| :--- | :--- |
| $\frac{246}{}$ | $\frac{383825}{}: 384 X=156$ |
| 40412 | $\frac{19992}{195}$ |
| 25534 | |
| $\frac{12656}{1603552}$ | $\frac{17926}{20675}$ |

Anmerfung 1: Das æednen mit fyitematicifen Bablen beruft Giernad) im Weefentidien auf bem mit einzifferigen Zablen, bem „(Eins unt Eint, Eins von
 ein= (bis zwei=) zifferigen 3ablen mögliden 2 thbitionen, Subtractionen, Maultipli= cationen und Dibifionen bilden fomit die ©rundlage jeiner practicden \mathfrak{A} fusfübrung. Diefelben find natürlid für iebes Eyftem veridieben; fo lautet 子. B. Daş Ein mal (Eins bes jedistheiligen Gyjtem:

1.	$1=1$	$2 \cdot$	$2=4$	$3 \cdot$	$3=13$	$4 \cdot$	$4=24$
1.	$\mathbf{2}=2$	$2 \cdot$	$3=10$	$3 \cdot$	$4=20$	$4 \cdot$	$5=52$
5	$5 \cdot 10=41$						
$1 \cdot$	$3=3$	$2 \cdot$	$4=12$	$3 \cdot$	$5=23$	$4 \cdot 10=40$	$10 \cdot 10=100$
$1 \cdot$	$4=4$	$2 \cdot$	$5=14$	$3 \cdot 10=30$			
$1 \cdot 5=5$	$2 \cdot 10=20$						
$1 \cdot 10=10$							

 Sebraude \mathfrak{z}. \mathfrak{B}. ber rëmijden ober griedifiden 3 aflzeiden bat, und welde fida anf
 lidit burd ben छ̧ebraud ber அull zum શusfullen Ieerer Stellen. Die für bas
 Dodi empfeflen fiad weber fefr tleine 3ablen, wie 2, 3 (weil bei ifnen die gröberen Sablen in zu ausgebebnter und beßfalb wenig bequemer und überfixitlifier form

 Theiler zulafien (wie z. B. bie 3 aft 12), weil fiah für biefelben eine größere $\mathfrak{A n z a b l}$

 einfade $\mathfrak{B r u d u t b e i f e}$ ber Gobberen Einteit $10\left(\frac{1}{8}, \frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}\right)$.

Die Fraxis Gat fíd inde巨 feit ben alteften Seiten für bas becabiía) ©yitem entídieben, bodi finben fï̆ baneben - für benannte (Gröben - auđ) anbere Syiteme im (Sebrauçl), lo z.B. Das frühere Duobecimaliyftem ber Rängermaange. Man bemut felbit beridiebene ©yfteme bei ciner unt berjelben $\mathfrak{A r t}$ von Gröben; fo ift 3. \mathfrak{B}. bei ben Meffen von Winfefn bie fleinfte Eingeit bie Secunbe, bie nädit Göbere, ober bie Minute greid) 60 Secunben, ber (Grab gleidid 60 Mimuten, bagegent Eintheilung bes selbes u．bgl．

 bie im Uebrigen fo zwectmä巨ige Einführung cines uno beffetben ©vftems für alle Fedmungen geltent madfen laffer．

5．In gleidjer Weije，wie man von Der urjprünglidjen Ceintreit zu （Einbeiten bobberer Dromung aufiteigt，fann man aud von berfelben zu Einheiten nieberer Dronung herabjteigen，indem man bie uriprïng $=$ lide CEintheit in gleide Theile theilt，und zwar bei ber（Stundzabl a in a Theile，io DaẼ Der Bruid $\frac{1}{a}$ alz die（Eintheit ber $-1^{\text {ten }}$ Dromung $\left(a^{-1}\right)$ ， Der ate Theil Diejer lebteren，affo $\frac{1}{a^{2}}$ ，ald Einbeit der $-2^{\text {ten }}$ Dromung $\left(a^{-2}\right)$, u．โ．f．，allgemein $\frac{1}{a^{n}}=a^{-n}$ arg EEinbeit Der－$n^{\text {ten }}$ Drommig angenommen wirb．Man pflegt audy in biejem Falle Den Жang einer Babl
 eines nieberen \Re Ranges um eine Stelle weiter nady redt Einkeiten Des vorbergehenden Ranges．§ierbei entftegt die Mothmendigteit， Die Stelle，weláde Die Eingeiten Deß uriprüngliden Fanges einnefomen，zu bezeidgnen，und Dies geiduieht Durd）ein unmittelfar nad）Diejen lezzteren gefergtes תomma．So bedeutet alfo 156，34001 die Bahbl

$$
1 \cdot a^{2}+5 \cdot a+6+3 \cdot \frac{1}{a}+4 \cdot \frac{1}{a^{2}}+1 \cdot \frac{1}{a^{5}}
$$

Unmerfung：Sablen nieberen Fanges fint alio ädite Briudfe，weldeye zu Жemern Fotenzert ber Grmbjabl haben．

Frilr bais becabiade Syitem füfren biejelben den Namen Decimal： $\mathfrak{G r u ̈ d}$ e．Die Regeln für Das Redynen mit joldjen Brüdjen，Die Berwand： Iung gemeiner Briudje in Decimalbrüdje， \mathfrak{u} ．f．w．，ergeben fits）aus bem Biaberigen und fönnen kier als befant borausgefest merdent．
§cis § 29，30．Barbey XI， 204.
6．Theilbarfeit ber becabilaen Bahlen．
ફeis § 28.
（Eine in irgend einem Bahlenjyitem augerdrücte $3 \mathfrak{a b l} z$ ijt burd） eine 3 afl k theifbar，wemn die Summe Der Froducte aut ifren cinjelnen Biffern in Diejenigen \Re efte，welde Durd）Divifion ifrer Einkeiten mit k entifetyen，durd k theilbar ift．－Denn find $a, b, c, \ldots d, e, f$ bic auf＝ einander jolgenden Biffern von z und Die Ginbeiten Derjelben bezüglidy $A^{n}, A^{n-1}, A^{n-2}, \ldots A^{2}, A^{1}, A^{0}$ ，io ift $z=a A^{n}+b \cdot A^{n-1}+$ $c \cdot A^{n-2}+\ldots .+d A^{2}+e A+f$ ．ぶt nu！$A^{n}=p \cdot k+\alpha$ ， $A^{n-1}=q \cdot k+\beta, A^{n-2}=r \cdot k+\gamma, \ldots, A^{2}=s \cdot k+\delta$, $A=t \cdot k+\varepsilon$ ，jo ift

$$
\begin{aligned}
z= & a p k+b q k+c r k+\ldots+d s k+e t k \\
& +a \alpha+b \beta+c \gamma+\ldots+d \delta+e \varepsilon+f
\end{aligned}
$$

alio z Dutd k theifbar, went $a \alpha+b \beta+c \gamma+\ldots+d \delta+e \varepsilon+f$ burd) k theilfar ijt.

Wendet man biefen Sats auf bas becabifide Syitent an, jo findet man Yeidit:
(Fint Bafl z ift theitbar ourd):

1) $k=2$, wemt ihre retgte Biffer f ourd) 2 theitbar ift,
2) $k=3$, wemt bie ©umme $a+b+c+\ldots+d+e+f$ igrer Siffern Durd) 3 theitbar ift,
3) $k=4$, went die aus den beiben rebzten Biffern e, f gebirbete 3 abl $2 e+f$ eş ift (oder autu), wert $10 e+f$ eß̉ ift),
4) $k=5$, went Die lekzte Biffer f eß ift , alfo für $f=0$ oder $f=5$,
5) $k=6$, wemt $4(a+b+c+\ldots+e)+f$ es ift,
6) $k=7$, went $\ldots 5 a+4 b+6 c+2 d+3 e+f$ es ift,
7) $k=8$, werm $4 d+2 e+f$ (oder aud $100 d+10 e+f$) eß ift,
8) $k=9$, wenn Die Suerpumme ber ßiffern $a+b+c+\ldots+f$ es ift,
9) $k=10$, went Die leb̧te Biffer $f=0 \mathrm{ift}$.
10) Durdj $k=11$ ift z theifbar, wenn bie Summe ber an ber erften, britten, fünften, überbaupt ber an ungeraben Stellen ftekenden Biffern gleide Der Summe der an geraden Stellen fetenden ift, oder wemn $f-e+d-c+b-a$ 2c. $=0$ ift.

II. Majinnitt: Sotenzen, Winzeln mid Rogarithmen.

III. Capitel.

§ 18. Grfflarutg.
 Multiplication und Dibifion mit ßotenzen.

Ěin Wrobuct $a \cdot a \cdot a \ldots$, Defien Factoren cinander gleidy find,
 Eactoren ibr Exponent. Man idreibt Die Wotenz $a \cdot a \cdot a \ldots(b \mathrm{mal})$ Eürger a^{b} und lieft ,"a zur $b^{\text {ten }}$ Fotenz", DDer ,"a hod $b^{\prime \prime}$.
§eis § 5. Barbey XI, 1-20. - Bergl. § 14, 2tnmerti. 2.
Mrmerfung 1: ab if nidit gleid) b^{a}, wie jebes Beifpiel (mit 2 (usnafme von $2^{4}=4^{2}$) zeigt.

Für bie Ћedifung mit §otenzen erbält man bie Formeln:

$$
\text { (54) } \quad a^{m}: a^{n}=a^{m+n}
$$

b. И. Ftatt zwei Botenzen mit gleiden $\mathfrak{B a j e n}$ zu multipliciren, fant man die gemeinidaftlide Bajis mit ber Summe ber Exponenten potenziren.

Beweis: $a^{m} \cdot a^{n}=(a \cdot a \cdot a \ldots(m \mathfrak{m a l})) \cdot(a \cdot a \ldots(n \mathfrak{m a l}))$ $=a \cdot a \cdot a \cdot a \cdot a \cdot \ldots(m+n \mathrm{mal}) \cdot(\mathbb{1 4},(31),(32) \cdot)=a^{m+n}$.
§cis \$ 34. Barbet XI, 21-103.

$$
\begin{equation*}
a^{m}: a^{n}=a^{m-n} . \tag{55}
\end{equation*}
$$

Wie lautet dieje Formel in Worten?
5eis § 35. Barbey XI, 104-167.
Bemeiß: $\frac{a^{m}}{a_{n}}=\frac{a \cdot a \cdot a \ldots(m \mathrm{mal})}{a \cdot a \ldots(n \mathrm{mal})}$. Divibirt mant fier nadi) $\$ 14$, (34) und $\$ 12$, (21) mit Den einzefnen Factoren Des̉ શenners, To Geben fixix Diefe Factorent Des lekzteren gegen eine gleidje \mathfrak{Y} nzahl yon Factoren dés Bählers auf, es bleiben alfo $m-n$ Factoren in Diejem, oder Die \Re ßotenz a^{m-n} übrig.
 Für $m=n$ erbălt man auf gleide શBeife ben Werth 1 , für $m<n$ ben Wseeth $\frac{1}{a^{n-m}}$.

$$
\begin{equation*}
a^{m} \cdot b^{m}=(a \cdot b)^{m}, \tag{56}
\end{equation*}
$$

b. W. fatt zwei Wotenzen mitgreid)en Exponenten zu multi= pliciren, fanm mandas Broduct igrer $\mathfrak{B a j e n}$ mit dem gemein= idaftliden (Exponenten potenziren.

Beweiқ: $a^{m} \cdot b^{m}=(a \cdot a \cdot a \ldots(m \mathrm{mal})) \cdot(b \cdot b \cdot b \ldots$ $(m \mathrm{mal}))=(a b) \cdot(a b) \cdot(a b) \ldots(m \mathrm{mal})$, nadi $\$ 14,(31),(32)$, - ber $=(a b)^{m}$.
§ei̊ § 36, 3-12. Barbel) XI, 172-174.

$$
\begin{equation*}
a^{m}: b^{m}=(a: b)^{m} \tag{57}
\end{equation*}
$$

Wie lautet Dicie Regel in Worten?
$\mathfrak{B e w e i z a ̈ b u l i a b ~ w i e ~ v o r b e r . ~}$
§eiz § 37, 5-13. Barbet XI, 168-171.
Mnmerfung 3: Für bie शbdition uno Subtraction von झotenzen, wie für bie Multiplication und Divifion folduer, welde veridiebene Bajen und Exponenten
 $(a \pm b)^{n}$ if, wie jebes Beippiel zeigt.

§ 19. Matenzen mit zuiammengeiegten Efrpanenten.

$$
\begin{equation*}
a^{m+n}=a^{m} \cdot a^{n} \tag{58}
\end{equation*}
$$

- Wie mird eine $\mathfrak{Z a h l}$ mit ciner Summte potenzirt?

Betueỉ folgt aus (54).
(59) $\quad a^{m-n}=a^{m}: a^{n}$.

Wie wird eine $\mathfrak{B a h l}$ mit einer Differenz potenzirt?
Beweis folgt aus (55).
(60) $\quad a^{m \cdot n}=\left(a^{m}\right)^{n}=\left(a^{n}\right)^{m}$.

Wie wird eine 3 abll mit cinem Wroduct potenzirt?
Beweis: Dronet man die $m n$ ffactoren in $a^{m n}$ in $m \Re$ Reiben, Deren jede n Ofactoren enthält, 子. B. nadj folgendem Sdjema:

$$
\begin{aligned}
& \quad a \cdot a \cdot a \ldots(n \mathrm{mal}) \\
& \cdot a \cdot a \cdot a \ldots \\
& \cdot a \cdot a \cdot a \ldots \\
& \cdot a \cdot a \cdot a \ldots \\
& \vdots \\
& m \mathrm{mal}
\end{aligned}
$$

io bilden die Factoren jeber Sorizontalreige für fida bie Wotenz a^{n}, und ba m folder 丹eiken zu multipliciren fino, io erfält man $\left(a^{n}\right)^{m}$. Da ferner die m Gactoren jeber Der n neben einander ftekenden Berticalreiben die Fotenz a^{m} bifben, io ergält man ebento $\left(a^{m}\right)^{n}$.
§еіз § 38, 14-16.

§ 20. Wotenzen mit zufammengejegter $\mathfrak{B a f i t i}$. $^{\text {a }}$.

$$
\begin{equation*}
(a \cdot b)^{n}=a^{n} \cdot b^{n} \tag{61}
\end{equation*}
$$

Wie wird ein Wroduct potenzirt? Beweis folgt aus (56). 5eis § 36, 13-16. Sarbey XI, 175-176.

$$
\begin{equation*}
\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \tag{62}
\end{equation*}
$$

Wie wirb ein Quotient potenzirt? Beweis folgt aut (57). §еів § $37,14-18$. Warbey XI, 177-186.

$$
\text { (63) } \quad\left(a^{m}\right)^{n}=\left(a^{n}\right)^{m}=a^{m n} \text {. }
$$

Wie wirb eine $\mathfrak{F o t e n z}$ potenzirt? Beweis folgt aus (60). 5eiz 38, 2-13. Barbey XI, 187-199.
 auf io einfatife Refultate und ift baker vorläufig mur burd) Tusführung ber Multiplication zu bewirfer. Bergleide $\$ 13$, (3i. (29). Einftweilen merfe man (§ 13, ©I. 30):

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} ;(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} ; \\
& (a-b)^{2}=a^{2}-2 a b+b^{2} ;(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3} .
\end{aligned}
$$

थus biefen formeln gebt aud berbor, báB $\left.(a \pm b)^{n} n i d\right) t$ gleid $a^{n} \pm b^{n}$ iff. Erweiterung ber formeln (54) - (63) auf zulammengefestere Ausbriulue.

§ 21. Watenzen mit sull, Eing unt algefraijijen Bajlen.

Die Formel (59) geft für $m=n$ über in
(64)

$$
a^{0}=1
$$

unto ift $m<n$, alfo $m-n$ negatio, fo fann man dafür idfreiben:
$a^{-b}=a^{0-b}=\frac{a^{0}}{a^{b}}$, ober nad) (64)
(65)

$$
a-b=\frac{1}{a^{b}}
$$

Dbgleid mun nady der oben gegeberen Definition Der §otenz bie शuß̉brüffe a^{0} und a^{-b} feinen Sinn haken, weil von einem Froduct mit 0 Factoren, ober mit einer negativen \mathfrak{Z} (nzabl yon Factoren feine $\mathfrak{R e d e}$ jein fant, fo ftegt Dody nidute im Wege, mumehr jert Definition Der \mathfrak{A} ft zu erweitern, Dañ Die vorgenannten $\mathfrak{A} u$ bbrücte Den Durd bie Formeln (64) unt (65) ihnen beigelegten Simn erhalten. Wir haben zu Diefent Bwelfe
 zu Definiren, wodurd die frübere Definition Der Wotenz für ganze pofi= tive Exponenten nid)t verändert wirb; vielmehr ift diefe in jenter ala befon= Derer Fall enthalten. 2utb Die im $\mathfrak{B o r i g e n ~ f u ̈ r ~ p o f i t i v e ~ E x p o n e n t e n ~ a b = ~}$ geleiteten ©ejeke bebalten für Den erweiterten Begriff ihre ©iulttgfeit. So ift 子. B. audi $(a b)^{-n}=a^{-n} \cdot b^{-n}$, Dem es ift

$$
\frac{1}{(a b)^{n}}=\frac{1}{a^{n} \cdot b^{n}}=\frac{1}{a^{n}} \cdot \frac{1}{b^{n}}=a^{-n} \cdot b^{-n} .
$$

 feiner weiteren \mathfrak{y} (nleitung und fann als $\mathfrak{H e b u n g s a u f g a b e ~ b i e n e n . ~}$

Sit endlid) Der (Exponent gleid) 1, io erbält man aut diejer jelbigen Definition, wenn man $m=n+1$ ammemt,

$$
\begin{equation*}
a^{1}=a . \tag{66}
\end{equation*}
$$

Sit umgefehrt die Bafiz ఇull, oder eine negative Zahl, oder Cint, jo erbält man leidit die Regeltn:
(67) $0^{a}=0$, aber $0^{0}=0^{a-a}=\frac{0^{a}}{0^{a}}=\frac{0}{0}$, b. G. 0^{0} famn jebe beliebige 3 abl bedeuten;
(68) $(-a)^{2}=+a^{2},(-a)^{3}=-a^{3},(-a)^{4}=+a^{4}$, 1. f. w., allgemein $(-a)^{2 n}=+a^{2 n},(-a)^{2 n}+^{1}=-a^{2 n}+{ }^{1}$,
 mit demfelben exponenten potenzirt und ber Fotenz das Borzeiden + oder - giebt, je nadjoem Der Exponent eine gerabe (D. i. Durd) 2 theilbare), oder eine ungerabe $3 a h l i f$.
(Endidid) ift $1^{a}=1$.
Onmerfung: Seber 3 ably a fant man 1 als Exponent zujezen.
5eiz $\$ 39$. Barbet XII.

IV. Capitel.

§ 22. Erflärungen.

Sine Bafl a mit einer anderen $3 \mathfrak{a b l} b$ rabiciren (aus a bie $b^{\text {te }}$ Wutzel anzziehen), heift zu einer Wotenz a und ifrem (Exponenten b die Bafis c juchen. Man idureibt $\sqrt[b]{a}=c$, nennt a ben $\Re a b i c a n d e n, b$ ben Exponenten (Whrzelexponent, im Segenjak zu Fotenzerponent), $\sqrt[b]{a}$ Die $b^{\text {te }} \mathfrak{W u r z e l}$ aus a, und c Den Werth Der Wsurzel.

Unmerfung: Sit $\sqrt[b]{a}=c$, fo ift $c^{b}=a$. Das ఇabiciren if affo eine bem
 $x^{n}=a$ gegeben, io if zufolge bee Erflärung ber शsurzel $x=\sqrt[n]{a}$. थebulidia folgt a $4 ร \sqrt[n]{x}=b, x=b^{n}$.
 genaunt. Bei Quabrativurzeln pflegt man ben Exponenten regzulafien, z. \mathfrak{B}. \sqrt{a} fratt $\sqrt[2]{a}$.

Die Erflärung Deş Begriffis einer Wurzel ift ausgeiprodien in ber Formel：
（69）

$$
(\sqrt[b]{a})^{b}=a
$$

ober in Worten：Die $b^{\text {te }}$ Wurzel aus a ift Diejenige Bahi，Deren $b^{\text {te }}$ Wotenz gleidy a ift．

21us Diejer ©rtarung folgt：
（70）

$$
\sqrt[b]{a^{b}}=a
$$

b．6．rabicirt man cine Botenz mit ibrem（xxponenten，io erbält man die Bajiz．

நeis § 41．Barbey XIII， 1.

§ 23．Sübe ïher bas fedinen mit Marzeln．

$$
\begin{equation*}
\sqrt[m]{a \cdot b}=\sqrt[m]{a} \cdot \sqrt[m]{b} \tag{71}
\end{equation*}
$$

Wie wird ein Wroduct rabicitt？
Betoci 3 ：Denn $(\sqrt[m]{a} \cdot \sqrt[m]{b})^{m}$ ift nad (61) gleid $(\sqrt[m]{a})^{m} \cdot(\sqrt[m]{b})^{m}$ ，
 Wurzel－$\sqrt[m]{a \cdot b}$ ？$)$
\｛nmerfing 1：Anmenoung biejer Formel anf practifdes \％inzerausziefen aus gröberen Zahlen burał Serlegung berfelben in ซactoren，子．ঞ．$\sqrt{6084}=$ $\sqrt{2 \cdot 2 \cdot 3 \cdot 3 \cdot 13 \cdot 13}=\sqrt{4 \cdot 9 \cdot 169}=2 \cdot 3 \cdot 13=78$ ．乌erausfeken quadra＝

$$
\begin{equation*}
\sqrt[m]{a: b}=\sqrt[m]{a}: \sqrt[m]{b} \tag{72}
\end{equation*}
$$

Wie wird ein Duotient rabicirt？
Beweiる：（Durd）Fotenziren ber redten Seite ber（Bleidung mit m nad）（62）．

犬nmerfung 2：Fuir bas ケabiciren von Summen ober Differenzen giebt is
 \mathfrak{U} mgetesert ift

$$
\begin{align*}
& \sqrt[m]{a} \cdot \sqrt[m]{b}=\sqrt[m]{a \cdot b} \tag{73}\\
& \sqrt[m]{a}: \sqrt[m]{b}=\sqrt[m]{a: b} \tag{74}
\end{align*}
$$

Wie werden Wurzeln mit gleiden Exponenten multiplicirt，wie Dividirt？

Beweife wie vorber．
शnmerfung 3：2nmenbung ber formel（73）um factoren por einem Wisurjelzeidjen unter biefes zu bringen，z．B．$a \sqrt{b}=\sqrt{a^{2} b}$ ．－Ertveiterung ber for＝

$$
\begin{aligned}
& \frac{a}{\sqrt{b}}=\frac{a \sqrt{b}}{\sqrt{b} \cdot \sqrt{b}}=\frac{a \sqrt{b}}{b}=\frac{\sqrt{a^{2} b}}{b}, \text { ober } \frac{a}{b+\sqrt{c}}=\frac{a(b-\sqrt{c})}{(b+\sqrt{c})(b-\sqrt{c})}= \\
& \frac{a \cdot(b-\sqrt{c)}}{b^{2}-\sqrt{c^{2}}}=\frac{a \cdot(b-\sqrt{c)}}{b^{2}-c}, \text { ober } \frac{a}{\sqrt{b}+\sqrt{c}}=\frac{a(\sqrt{b}-\sqrt{c})}{(\sqrt{b}+\sqrt{c)}(\sqrt{b}-\sqrt{c})}=
\end{aligned}
$$

$\frac{a(\sqrt{b}-\sqrt{c})}{\sqrt{b^{2}}-\sqrt{c^{2}}}=\frac{a(\sqrt{b}-\sqrt{c})}{b-c}$, ober $\sqrt{b}+\sqrt{c}+\sqrt{d}=\frac{a(\sqrt{b}+\sqrt{c}-\sqrt{d})}{(\sqrt{b}+\sqrt{c})^{2}-d}=$ $\frac{a(\sqrt{b}+\sqrt{c}-\sqrt{d})}{b+c-d+2 \sqrt{b c}}=\frac{a(\sqrt{b}+\sqrt{c}-\sqrt{d})(b+c-d-2 \sqrt{b c})}{(b+c-d)^{2}-4 b c}$, u. bgl. m.

$$
\begin{equation*}
\sqrt[m]{a^{b}}=(\sqrt[m]{a})^{b}=a^{\frac{b}{m}}=\sqrt[\frac{m}{b}]{a} \tag{75}
\end{equation*}
$$

Wie wirb aus einer Wotenz eine Wurzel ausgezogen?
Wie wird umgetehrt eine Wurzel potenzirt?
Bemeis: $\sqrt[m]{a^{b}}$ ift Die 3ahl, Deren $m^{\text {te }}$ ßotenz gheid) a^{b} ift. (E) ift nun na(b) $(63)\left[(\sqrt[m]{a})^{b}\right]^{m}=\left[(\sqrt[m]{a})^{m}\right]^{b}=a^{b}$, und $\left(a^{\frac{b}{m}}\right)^{m}=a^{\frac{b}{m} \cdot m}=a^{b}$. Bei $a^{\frac{b}{m}}$ īt vorläufig vorausgejetst, Dã̃ m ein \mathfrak{m} gactor von b, oder $\frac{b}{m}$ eine ganze Batl jei. Ebenio ijt in $\sqrt[\frac{m}{b}]{a}, \frac{m}{b}$ alz ganze $\mathfrak{B a h l}$ vorauzzujetzen $(z \cdot$ B. $\left.\sqrt[12]{a^{4}}=\sqrt[3]{a}\right)$, und man hat dann $(\sqrt[\frac{m}{b}]{a})^{m}=\sqrt[\frac{m}{b}]{a^{m}}=a^{m}: \frac{m}{b}=a^{b}$, wie vorker: .

$$
\begin{equation*}
\sqrt[m]{a^{b}}=\sqrt[m \cdot p]{a^{b^{b} \cdot p}}=\sqrt[m: p]{a^{b}: p} ; \tag{76}
\end{equation*}
$$

D. G. man darf bei einer Warzel aus einer Botenz die beiden Exponenten mit derielben 3abl multipliciren oder burd Diefelbe Bafl Divibiren.

Bewei : Dent $\left(\sqrt[m p]{a^{b p}}\right)^{m}=\sqrt[\frac{m p}{m}]{a^{b p}}=\sqrt[p]{a^{b p}}=\sqrt[p]{\left(a^{b}\right)^{p}}=a^{b}$, und umgefefyrt $\quad\left(\sqrt[m]{a^{b}}\right)^{\frac{m}{p}}=\sqrt[m: \frac{m}{p}]{a^{b}}=\sqrt[p]{a^{b}}=a^{b}: p$.
 gactor von m unb b fei.

$$
\begin{equation*}
\sqrt[m]{\sqrt[n]{a}}=\sqrt[n]{\sqrt[m]{a}}=\sqrt[m n]{a} \tag{77}
\end{equation*}
$$

Whie wird eine Wurzel radicirt?
Wie wird eine Bahl mit einem Wroducte radicirt?
Beweife: Durd) Fotenziren mit m, oder mit $m n$ nadj (75). §eis $\$ 42-46$. Barbey XIII.

§ 24. Fatenzen uno Warzeln mit gebrodenen Grpanenten.

Die Formel $\sqrt[m]{a^{b}}=a^{\frac{b}{m}}$ führt umgefehrt zu Der Жegel:
Eine $\mathfrak{Z a g l}$ wird mit einem $\mathfrak{Q u o t i e n t e n}$ potenzirt, indem man iie (in beliebiger Reibenfolge) mit jeinem Divibenden poten= zirt und mit feinem Divifor rabicirt.

Dieje, zunädfit nur für ben Jall, Dā̃ m ein factor von b, D. ந. Daß́

 frühere E®fflärung ber $\mathfrak{F}_{80 t e n z}$ für ganze (pofitive und negative) Expo nenten mur babin erweitern, Dag unter $a^{\frac{a}{m}}$ in allen fällen die $m^{\text {te }}$ श̧ur= zel aus a^{b} verftanden werben foll.

W3ir feken affo allgemein:

$$
\begin{equation*}
a^{\frac{b}{m}}=\sqrt[m]{a^{b}} \tag{78}
\end{equation*}
$$

und insbejondere

$$
\begin{gather*}
a^{1}=a=\sqrt[1]{a} \tag{79}\\
a^{\frac{1}{m}}=\sqrt[m]{a}, a^{-\frac{1}{m}}=\frac{1}{\sqrt[m]{a}}, a^{-\frac{b}{m}}=\frac{1}{\sqrt[m]{a^{b}}} \tag{80}
\end{gather*}
$$

Cobenfo erweitern wir ben Begriff Der Wurzel für gebrodjene Expo= nenten, indem wir
feķer.

$$
\begin{equation*}
\sqrt[\frac{m}{b}]{a}=\sqrt[m]{a^{b}}=a^{\frac{b}{m}} \tag{81}
\end{equation*}
$$

அnmerfung: Daber ift nut aud, ganz alfgemein $\boldsymbol{V}^{\boldsymbol{p}} a^{b: p}=\sqrt[m]{a^{b}}$. Die für Fotenzen und Wsurzeln mit ganzen Exponenten aufgeftelten Säţe gelten unber= änbert audd für folde mit gebrodienen (Expontenten, ba biefetben fid ants ben erwei= terten $\mathfrak{B e g r i f f e n}$ ber $\mathfrak{F o t e n z}$ und $\mathfrak{W u r z e l}$ ebenfalls ableiten Yafien.

E8 if z. $\mathfrak{B}^{\frac{b}{a^{m}}} \cdot a^{\frac{c}{m}}=a^{\frac{b+c}{m}}$; benn $\sqrt[m]{a^{b}} \cdot \sqrt[m]{a^{c}}=\sqrt[m]{a^{b+c}}$, u. f. w. Seis § 47. ßarbey XVI.

Wird ber Exponent ciner Wirzel gleid Null, to hat man $\sqrt[0]{a}$ $=\sqrt[b-b]{a}=a^{\frac{1}{b-b}}=a^{\frac{1}{0}}=a^{\infty}=\infty, 1$ voer 0 , ie nactubem $a>1,=1$
 $0^{m}=0$. Dagegen farn $\sqrt[0]{1}$ jede beliebige Bagl bedeuten, benn $a^{0}=b^{0}=1$.

Sif ber Exponent einer Wurgel negatio, jo hat man $\sqrt[-m]{a}=a^{-\frac{1}{m}}$ $=\frac{1}{\sqrt[m]{a}}$

Jit ber $\Re a b i c a n d$ ciner $\mathfrak{W u r z e l}$ eine algebraijd) Babl, fo fant man Die Wurzel aus Demt Siliede derfetben auzzieben. In Wetreff Des diefer Wurzel zu gebenden Worzeidjens find folgende Fälle zu unteríjeiben:

1) Jit der Wurzeterponent eine ungerade 3 afl, io ergält die Wurzel baffelbe 彐orzeidjen, weldes Der Radicand batte, oder es ift

$$
\begin{equation*}
\sqrt[2 n]{ }+\sqrt[1]{+a}=+^{2 n}+\sqrt[1]{a}^{2 n}+\sqrt[1]{-a}=-\sqrt[2 n]{ }+\sqrt[1]{a} \tag{82}
\end{equation*}
$$

2) Sit Der Wurzelexponent eine gerabe $\mathfrak{B a h l}$ und α) Der Radicano pofitio, fo fann bie Wurzel fowobl pofitio alz negatio fein und erbält fomit ein Doppelteß Borzeiden, ober

$$
\begin{equation*}
\sqrt[2 n]{+a}= \pm \sqrt[2 n]{a} \tag{83}
\end{equation*}
$$

B) Ift Der Rabicand aber negativ, fo fann bie Wurzel uberbaupt nidyt auß̉gezogen werben, voer bem \mathfrak{A} иื̉brudi $\sqrt[2 n]{-a}$ entipridt feine ber be= fannten Baflformen.

Beweis: Denn aus (68) folgt 1) $\left(+^{2 n} \sqrt[1]{a}\right)^{2 n+1}=+a$ und $(-\sqrt[2 n]{+1} a)^{2 n+1}=-a$, und 2) $(+\sqrt[2 n]{a})^{2 n}=(-\sqrt[2 n]{a})^{2 n}=+a$. Dagegen bedeutet $\sqrt[2 n]{-a}$ biejenige $3 a \mathfrak{G l}$, Deren $2 n^{\text {te }} \mathfrak{\text { Sotenz }}$ gleid $-a \mathrm{ift}$. Da aber nad (68) die geraden Fotenzen fomogr einer jeben pofitiven als einer jeden negativen (ganzen oder gebrodjenen) Bahl pofitio find, fo fann $\sqrt[2 n]{-a}$ burd feine biejer Bablformen Dargeftellt werben.
\mathfrak{A} nmerfung: $\mathfrak{I n s b e f o n b e r e ~ m e r f e ~} \operatorname{man} \sqrt{a^{2}}= \pm a, \sqrt[3]{+a^{3}}=+a$, 3 $\sqrt[3]{-a^{3}}=-a$.

Eine Wurzel aub einer negativen Bahl mit geraden Wurzelexponen= ten wirb gine imaginäre Sahl genant, im Gegenjak zu Det übrigen Bablformen, welde reelfe Bablen genant werben.

Wenn aud eine imaginäre Babl fid) burd) feine ber reellen Bablformen bar=
 jei, vielmelfr liegt bier cine Erweiterung bes bisberigen $\mathfrak{Z a b l b e g r i f f i s ~ v o r , ~ i n ~ a ̈ h n l i d j e r ~}$ Weife, wie bei ber Einfülyrung ber negativen unt ber gebrodjenen Zablen. WSie 子. \mathfrak{B}. Die Difierenz 3-4 ober ber suotient $\frac{3}{4}$ nur bann unmëglid, finb, wenn nur
 fidft einen Cinm erbaaten, burd weldent ber anfänglidje Begriff ber (abjoluten, gangen) Zabl erveitert wirb, fo verbält es fidd aud mit ben imaginären Bablen
 Strec̆e $A B$, weldel auf einer Geraben bon A aus in ber ats bie pofitive angenom= menen $\Re i d a t u n g$ abgetragen ift, fegt bem entipredend bie nadi ber entgegengeiegten Riditung abgetragent, gleid) lange Etrecfe $A C$ gleid - 1 , und erridtet auf $B C$ itt A bie Senfredte $A D=A B=A C$, to if nadi geometrijden ©äz̧en $A D$ bie mittlere geometriide Froportionale zwifdiden $A B$ und $A C$, umb man fant alio $A D^{2}=(+1) \cdot(-1)$, ober $A D=\sqrt{-1}$ iegen. Die ©trecte $A D$ veranfíaulidid alfo die imaginäre Eintbeit. Man fant in gleider Wseife auf ber erriditeten Senfrediten von A aus nadi ber entgegengefebten $\Re i d j t u n g$ bie Strefe $A E=A D$ abtragen und $A D=+\sqrt{-1}, A E=-\sqrt{-1}$ betraditen. Dic (Ent= ¡千deibung barïber, welde ber beiben æidtungen bier als bie pojitive, weldje als bie negative gelten foll, ift ant fide ebenfo wilffürlid, wie bei $A B$ unt $A C$, bie Ber=

3aht $\sqrt{-a^{2}}=a \sqrt{-1}$ bebputet mun bas afadie ber imaginären (Einbeit.

 - a^{2}. Won bejonberer widitigfeit bei ber \Re edinung mit imaginären 3 abfen find bie - aud̆ im Boritefenben zunädjit in's 2uge gefaßten - Suabratwourgeln aus negativen 3 ablen, über welde beßbbalb im folgenben bie widtigften \Re ecthnung $=$ regeln angegeben werben.
(E8) if

$$
\begin{align*}
& (\sqrt{-a})^{2}=-a, \tag{84}\\
& (\sqrt{-a})^{3}=(\sqrt{-a})^{2} \cdot \sqrt{-a}=-a V-a, \\
& (\sqrt{-a})^{4}=(\sqrt{-a})^{3} \cdot \sqrt{-a}=(-a) \cdot(-a)=+a^{2}, \\
& (\sqrt{-a})^{5}=(\sqrt{-a})^{4} \cdot \sqrt{-a}=+a^{2} \sqrt{-a}, \text { u. ј. w. }
\end{align*}
$$

$$
\begin{equation*}
\sqrt{-a}=\sqrt{a} \cdot V-1 \tag{85}
\end{equation*}
$$

Dent $-a=(+a) \cdot(-1)$. Die imaginäre $\mathfrak{Z a f f f f o r m} \sqrt{-1}$, ober bie imagi= näre (Einbeeit, wiř häufig burd i bezeid)net. Kus (84) ergiebt fiă bafür:

$$
\begin{align*}
& i^{2}=-1, i^{3}=-i, i^{4}=+1, i^{5}=i, i^{6}=-1, \text { u. 「. w. } \tag{86}\\
& i^{4 n}+1=+i, i^{4 n}+2=-1, i^{4 n}+8=-i, i^{4 n}=+1 .
\end{align*}
$$

Ferner ift $i^{-1}=\frac{1}{i}=\frac{i}{i^{2}}=-i ; i^{-2}=\frac{1}{i^{2}}=-1, i^{-3}=\frac{1}{i^{3}}=-\frac{1}{i}$ $=-\frac{i}{i^{2}}=+i, i^{-4}=\frac{1}{i^{4}}=+1$, u. f. w., allgemein:
(87) $i^{-(4 n+1)}=-i, i^{-(4 n+2)}=-1, i^{-(4 n+3)}=+i, i^{-4 n}=+1$.

Ơir bie $\mathfrak{M u l t i p l i c a t i o n ~ u n d ~} \mathfrak{D}$ ivifion imaginärer Bablen finbet man mun:

$$
\begin{align*}
& (\pm \sqrt{-a}) \cdot(\pm \sqrt{-b})=-\sqrt{a b} \tag{88}\\
& (\pm \sqrt{-a}) \cdot(\mp \sqrt{-b})=+\sqrt{a b b_{1}}
\end{align*}
$$

oder ein Frobuct zweier (quabratioffer) imagintärer ©rößen if reell uno zwar pofitiv ober negativ, ie nadidem bie Borzeifien ber Fractoren ungleid eder gleid fint.

Beweis: $\sqrt{-a}=\sqrt{a} \cdot i, \sqrt{-b}=\sqrt{b} \cdot i,(\pm \sqrt{-a}) \cdot(\pm \sqrt{-b})$
$=(\pm \sqrt{a}) \cdot(\pm \sqrt{b}) \cdot i^{2}=+\sqrt{a b} \cdot(-1)=-\sqrt{a b} ;(\pm \sqrt{-a}) \cdot(\mp \sqrt{-b})$
$=(\pm \sqrt{a}) \cdot(\mp \sqrt{b}) \cdot i^{2}=-\sqrt{a b} \cdot(-1)=+\sqrt{a b}$.

$$
\begin{equation*}
\pm \sqrt{-a}=+\sqrt{\frac{a}{b}} ; \quad \frac{ \pm \sqrt{-a}}{ \pm \sqrt{-b}}=-\sqrt{\frac{a}{b}} \tag{89}
\end{equation*}
$$

ober ein Duttient auts zwei imaginären ஞrößen ift reell, unt zwar pofitio oder negativ, ie nadjoem bie ßorzeiden ber Factoren gleid ober ungleid finb.

Bewcile ätnlid wie bei (88).

$$
\begin{align*}
& \sqrt{-a} \cdot \sqrt{b}=\sqrt{-a b} \\
& \sqrt{-a}: \sqrt{b}=\sqrt{a: b} \cdot \sqrt{-1} \tag{90}\\
& \sqrt{a}: V-b=-\sqrt{a: b} \cdot \sqrt{-1} .
\end{align*}
$$

2Sie Iauten biefe formeln in 2 Worten? Beweife äfulidy wie bei (88).
 aus ben Diviforen gegebenter Duotienten, 子. B.
$\frac{a}{b+\sqrt{-c}}=\frac{a(b-\sqrt{-c})}{b^{2}-\sqrt{-c^{2}}}=\frac{a(b-V-c)}{b^{2}+c}$, u. bgf. m.
Eine Babl von ber form $a \pm b \sqrt{-1}$, worin a und b reelle Bablen finto, feigt eine complere 3 abl.

3 wei complere 3 abjlen, weldye fide) mur burd) bas Borjeifen bes imaginären GTiebes unter[dfeiben, wie $a+b \sqrt{-1}$ und $a-b \sqrt{-1}$, Geiken eitanber con= jugirt. Das Brobuct berfefben if $a^{2}+b^{2}$.

5eiz \& 48, 49. Barbey XVII.

§ 26. Irratianale Bablen.

Die Ertelärung ber bten Whrzel auß a in $\$ 22$ jeßt vorauß̉, Daß̃ ber Radicand a eime bte Fotenz irgend einer ganzen oder gebrodjenen Babl fei. So find z. ․ . $4,16,25, \frac{1}{4}, \frac{1}{36}, \frac{4}{9}, 2 \frac{7}{9}$ vollftändige zweite Potenzent unt 2 Die Suadratwurzeln auß Denjelben beziefungžveife $2,4,5, \frac{1}{2}, \frac{1}{6}, \frac{2}{3}, 1 \frac{2}{3}$.

Silt Dagegen bie Babl a feine wolftänoige bte Fotenz einer ganzen oder gebrodjenen Babl, io fann aud zu Derfetben in Dem bizherigen Sinte Die bte Whurzel nidit gefumben werben.

Dá es foldje Zaflen giebt, zeigt forgenbe Betradtumg: Bitbet man bie Reihe $1^{b}, 2^{b}, 3^{b}$ u. f. w. Der $b^{\text {ten }}$ ફotenzen alfer ganzen 3ablen, fo liegen zwiftien ie zwei berfelben nod) anbere ganze 3 ablen. (Es fei a cine ber Yetteren, to fann
 in ben fleinften 3ahlen ausocbrü̆t benfen, io baß̃ alfo c unb d relative ßrim= zablen fint, fo muణ $a=\left(\frac{c}{d}\right)^{b}=\frac{c^{b}}{d^{b}}$, alio $\frac{c^{b}}{d^{b}}$ eine ganze 3 abl, ober c^{b} butch) d^{b} theifbar fein. थus 2trbang 2. शr. 4, Зuf. 5 folgt, baEß bies nidft möglid) ift, wenn c und d relative ßrimzablen fins. 2(fio fann $\sqrt[b]{a}$ audd birrd) feinen $\mathfrak{B r u (f)}$ bargeftellt werben.
(Sileidjuohl hat bie Frorm $\sqrt[b]{a}$ auld in foldjen Fällen eine beitimmte Bebeutung. Man fann nämlid ftets zwei Dablen α, β finden, to da $\alpha^{b}<a$ unb $\beta^{b}>a$ ift. Man fann bierbei für α nady und nad immer grögere Werthe feßen, io dan α^{b} fid bem Werthe a mehr und mebr nähert, jedody ftets fleiner als Derielbe bleibt. Ebenio fann man für β nad und nad immer fleinere Werthe jeben, 'o Dan β^{b} fidid Dem Werthe a mefir und meffr nähert, ohne Denfetben ie zu erreidjen. Der 2 uझboruta $\sqrt[b]{a}$ erbält Dann bie Bedeutung Desjenigen (Sirentwerthes, weldem fiab α und β immer mebr nähern, ohne ifn ie vollitảnotg zu erreidjen.

So fann z. \mathfrak{B}. $\sqrt{2}$ weber burd) eine ganze nod) burd) eine gebrodicne 3 abl genaut auggebriičt werben. (Es liegt aber 2 zwifdent $1^{2}=1$ unt $2^{2}=4$, alfo $\sqrt{2}$ zwifdjen 1 unt 2, ebenfo liegt 2:

1) zwiidien $1,4^{2}=1,96$ und $1,5^{2}=2,25$,
2) zwifden $1,41^{2}=1,9881$ und $1,42^{2}=2,0164$,
3) зwifden $1,414^{2}=1,999396$ und $1,415^{2}=2,002225$, и. f. w.

Mio liegt $\sqrt{2}$ zwiidien 1,4 unt 1,5 , ferner zwiidien 1,41 uno $1,42,1,414$ und 1,415, 1. . . w.

Sieraus it zu eriefen, bā̧ $\sqrt{2}$ zwildjen zwei (brenzaablen liegt, bie man biŝ ins lunendlidge einanber uäbern fann, baja afio $\sqrt{2}$ einen beftimmten $2 \mathfrak{B e r t h}$ hat, welder zwar nidit volfitandig, aber bodi) bis zu iebem verlangten Esrabe ber Htmäferung angegeben werben famt. Bergl. \& 27 .

Derartige Baflen beigen irrationale Bahlen. Cine irrationale Baht ift alio eine foldfe, Deren Werth zwiidjen rationaten (ganzen ober gebrodenen) Baflen fiegt, imb Dem man fidi Durd foldje bis zu jebemt verlangten ©rade Der Senauigfeit nähern fant, ohne ifn jedodij jemats wirffid zu erreidjent. 2

Die biaberigen alfgemeinen \&ebriäße gelten, weil für bie ©orenz= zablen, aud für Die von biejen eingeid)

Hnmerfung: Sint beibe תatheten eines redtwinfeligen Dreieds greid) a, To it bie ફypotemue (Blanimetrie § 29, \&.93) glecid) $\sqrt{2 a^{2}}$. Jit affo 子. B. $a=1$, To if bie 5 yupotenuje gleid) $\sqrt{2}$. (Es if afio hier bie \&änge ber butcd eine itra= tionale 3 abl ausgebrüften Sinie genat conitutirbar.

Sint zwei Strecten $A B=a, C D=b$ gegeben, und foll bas Bergältni® $a: b$ berfelben angegeben werben, io erbält man, wenn a ein (ganjes) Bieffadjes won b ift, eine ganje 3abl. Sit a nidgt durd) b theilbar, läß̉t fid aber ein aliquoter Theil von b finben, ber fiad auf a ogne $\Re e f t$ abtragen läbl, fo erfält man einert Brud. Sit bagegen fein foldjer Theil von buorbanben, io tann bas Wer= Gältnī $a: b$ weber burda cine ganje $\mathfrak{B a h f}$, now burd einen $\mathfrak{B r u d}$ angegeben werben, und bie Strefen a unb b beisen incommenfurabel. (Bgh. Bfan. § 26.) Trägt mant in biefem gall irgenb cinten afiquoten Theil k vont b, etwa $k=\frac{1}{n} b$,
 $a>m k$ und $a<(m+1) k$, währent $b=n k$ if. Demmat́) ift bas Berbätnīß $a: b$ gröser als $\frac{m}{n}$ und ffeiner als $\frac{m+1}{n}$, und ba n befiefig gró angenemmen werben fann, to fant audf ber Unteridieb biefer beiber Brüde, mänlidi $\frac{1}{n}$, io flein gemadyt werben, als man will, ס. h. Fleiner ats jede gegebene Zaff. Das auf biefe 2 rt mit jeber verlangten 2 rmäherung, iebod) nie mit abjofuter (Senanig: feit burd einen $\mathfrak{B r u d}$ angebbare $\mathfrak{B e r b a ̈ l t n i f ~ i f t ~ e m e ~ i r r a t i o n a l e ~} \mathrm{Babj}$.

Segt man in biefem శoall $C D$ fo auf $A B$, baỉ C auf A fält, fo făut, wenn $a>b$ if, D auf cinen $\mathfrak{F u n f t}$ zwidaen A uno B. Diefer Theilpuntt von $A B$
 gleider Theile auf benfecben fommentann, b. h. alio, bañ er feets zwiidjen zwei aufeinanberfolgenben Ebeilpunften ber legzteren $\mathfrak{A x t}$ liegt. Mant fann igm aber burd biefe beliebig nabe tommen, wenn man bie \mathfrak{U} nabil bericlben entipredieno grố nimmt.

Weran[daulidet man bie ॠeibe ber abjoluten gangen Bablen burd Wunfte einer Geraben, beren (Entfermungen bon einem feifen \mathfrak{A} nfangspuntt ($\mathfrak{R u l l}$) fid wie biefe Bablen verbalten, io hat man eine \Re eibe in gleiden $2 \mathfrak{t b j}$ tanben vont einanber liegenber \mathfrak{F} unfte, weldee nadi ber cinen $\Re i d j t u n g$ ins $\mathfrak{U x}$ nenblidje fortidureiten. Durd bie gebrodjenen Zablen werben zwiifden biefen \mathfrak{F} unften beliebig viefe anbere ein= geidaltet, man bejätt jebod, wie nabe man biejelben einanber audf britrgen mäge, mur cine biscrete Funft= Reife. Durd bie irrationalen Sahfen wirb biejelbe fetig,
 burd eine Zafl bargefellt werben．Durd bie negativen 3 ablen wirb bie Gerabe in gleidjer $\mathfrak{W s e i f e}$ auti）nadid ber anberen $\Re i d t u n g$ bis ins Unenblide fortgefegt． Den imaginären 3 abfen entipridit in gleidjer Wseife bie burd ben 2 nnfangspunft
 finnlidid werben burdi）ben æuntt，wel（d）en man erfält，wenn man zuerff auf ber reellen ©eraben um bie ভtrecie a und bann in ber bagu jenfted）ten 丹idftung um bie Streafe b fortidureitet．Enveiterung bes Sablenbegrifis von ber \＆inie auf bie ganze flädj．

§ 2\％．Die Berecinuug ber $\mathfrak{B u r g e l n}$ ．

a）Qumirntwurzeln．

Daß $\mathfrak{D u a b r a t ~ e i n e r ~ e i n z i f f r i g e n ~} \mathfrak{B a b l}$ liegt zwiidjen $1^{2}=1$ und $10^{2}=100$ ，ift aljo eint ober zweiziffrig；Das 刃uabrat einer zweiziffrigen Bahk liegt zwifden 100 und 10000 ，ift affo Drei＝ober vierziffrig．Ebenjo ift Das̉ Suabrat einer breiziffrigen Babl fünf＝oder jedjaziffrig，u．¡．m． Uugemein，Das Duabrat einer nziffigen Babl ift $2 n-1=$ oder $2 n=$ ziffrig，benn Daffelbe liegt zwijøen $\left(10^{n-1}\right)^{2}$ und $\left(10^{n}\right)^{2}$ ，D．G．zwijden $10^{2 n-2}$ und $10^{2 n}$ ．

Daber ift umgefegrt bie תuabratmurzel aus einer ein＝ober zwei＝ zififrigen Sahl einziffrig，Die ఇuabratworzel aus einer brei＝ober vier＝ ziffrigen $\mathfrak{B a h l}$ zweiziffrig，u．. \mathfrak{m} ．SMgemein ift Die Suabratwurzel aus
 Die $\mathfrak{A} \mathfrak{n}_{z} \mathfrak{G h l}$ Der Biffern einer Suabratwurzel，wenn man Den Radicanden von redta nad lints in（5ruppen von le zwei Siffern theilt und bie $\mathfrak{A} n_{z a h l}$ Diejer ©ruppen beftimmt，mobei eime etwa vorn übrig bleibenbe Babl als eine ganze（Stuppe geredynt wirb．

Die Duabratworzel aus einer eit＝ober zweiziffrigen Babl findet man mit §uulfe Des Ein＝mal Einz．

Die Duabrativurzel auz einer brei＝oder vier zaffrigen $\mathfrak{B a b l}$ Gat bie Form $10 x+y$ ，Demnady ift ber Rabicand gleid $(10 x+y)^{2}=$ $100 x^{2}+2 \cdot 10 x \cdot y+y^{2}$ ．Man beftimme biernad．，um die ఇuabrat＝ murzel zu finden，x io，Dā̄ x^{2} Der erften Eruppe Des in Faare getheilten Rabicanden müglidit nahe fommt（jedod）nidit gröger ale diefelbe mird）， ¡ubtrabire von Dem Radicanden $100 x^{2}$ ，bejtimme y fo，Dā̄ $20 x \cdot y$ Dem

§it ber Radicand－was̉ Fier，wie im Folgenden，zunadit voraub＝ gejeß̧t wird－cin vollfändiges হuabrat，io muß $20 x \cdot y+y^{2}$ gleid Demt ganzen 凡efte jein．Findet fidh，Da乏 bieß nidyt Der Fall ift，io ift Der Werth von y zu groß̉，und alio zunädjit um eine（Einbeit fleiner als vorger anzurebmen．

$$
\begin{gathered}
\text { Beipipl: } \sqrt{62 \mid 41}=79 \\
\\
20 x=\frac{x^{2}=49}{140} 1341, y=9 \\
20 x y+y^{2}=1260+81=1341
\end{gathered}
$$

Die Suabratworzel aus einer 5: ober Gziffrigen Bagl hat bie Form $100 x+10 y+z=10 \cdot(10 x+y)+z$, DDer, seent man für $10 x+y, x_{1}$ feßbt, $10 x_{1}+z$. Demnad muß ber そadicand gleid $(100 x+10 y+z)^{2}=\left(10 x_{1}+z\right)^{2}=100 x_{1}^{2}+20 x_{1} z+z^{2}$ fein. Sieraus folgt Die Regel: Man beftimme zumädit Die zmeiziffrige Sabl $x_{1}=10 x+y$, jo daß $x_{1}{ }^{2}$ müglidjft nahe der Summe jämmtlidjer Sunderter Deふ Fadicanden fommt, D. G. man ziefe aus Der Durdid Die beiden erften (Struppen Des in Baare getbeiten Radicanden gebitdeten Babl, twie worker gezeigt, Dic Duabratwurzel möglidit amaäherno aus, füge Dem etroa bleibenden Refte Das lekte Bifferpaar zu und beftimme Durdij Divifion mit $20 x_{1}$ in die fo entitandene $\mathfrak{B a h r}$ Den $\mathfrak{W e r t h}$ von z jo, Daß̃ $20 x_{1} z+z^{2}$ gleid Diefer lebeteten $3 a \mathfrak{b l}$ wito.

Beipipl:

$$
\begin{gathered}
\sqrt{4277 \mid 16}=654 \\
x^{2}=6 y^{x} y^{2} \mid \\
20 x=120|677| y=5 ; x_{1}=65 \\
20 x y+y^{2}=|625| \\
20 x_{1}=1300 \\
2016 \\
20 x_{1} z+z^{2}=\mid 5216 \\
\hline
\end{gathered}
$$

 geidjeft in entipredjender Weife und bebari feiner cingehenden (Ertäuterung.
 zum $\mathfrak{F e r f a ̈ n D n i ß ~ D e s ~} \mathfrak{B e r f a b r e n s ~ i n ~ D e n ~ o b i g e n ~ B e i j p i e l e n ~ a n g e g e b e n e n ~}$ (Sleidungen toeg und redifnet wie in folgendem Beifpiel:

Um die Suabratwurzel auc einem Decimalbrud auş= zuzieben, betrad̆te man benjelben als einen gemeinen Brud, Deffen Renner
eine Fotenz won 10 ift，ziefje nadi $\$ 23$（72）Die Wurzel aus Dent Bähler und aus bem Nenner einzelt aus und bivibire die erjtere Wurzel Durd）Die feß̧tere．Die Radicirung Deß 刃ienners feģt voraus，Daß Der＝ ielbe eine gerabe Wotenz won 10 if，oder Daß̉ Der Decimatbrudid eine
 aus dent Nenter wieder eine Fotenz von 10 ，und man erkall bie Wurzel aus Dem Decimalbrud，indem man Den Säfler radicirt unt won bem＝ felben Katb io viele Decimalitellen abjtreidft，als der Fadicand Kat，oder ebenjobiele alz Gruppen von Bifferpaaren in Diejem auf Das Bionma folgen．

Wit der Bähler Des Decimafbrudes fein wolftändiges Duadrat，io fann Die Wurzel aus demielben nidt genau gefunden werden，jondern Diefelbe ift irrational．EFS bleibt in Diejem Fall bei Dem 2 Hzzithen Der Wurgel nady Demt vorber angegebenen Berfabren ein Rejt．Da man aber Dem Decimalbrudy beliebig viele 刃ullen atz Decimalitellen anhängen fann， io tann man in Diejem falle bie Redunig beliebig weit fortjeken und auf bieje Weife bie Wurzel bis zu jedem berlangten Srad von Fienautg＝ feit finden．Sat man nämlid $2 n$ Decimalitellen im Radicanden zum
 Febler ber Wsurzel meniger als eine Einkeit Der nten Decimalftelle．

Fierans ergiebt fide die alfgentente Fegel für Die Beredfung von Suabratwitzeln aus Decimafbriidjen：

Man theile Den Decimaffrud）in（5ruppen von ie zwei Biffern，und zwar indem man bom תomma aus nady beiben Seiten Gin theilt，umb ergänze die lebste ©fuppe，falla für diefefbe nur eine Biffer bleibt，Durd eine Nulf．Man radicire Dam，wie bei ganzen Saflen und feke im Rejultat das Romma，jobald man zu Der erften auf Das Romma bes Radicanben folgenben ©ruppe fommt．Seht Die Rednung nidft ohne Reft auf，io bilde man burd Bufügen von Nullen an Die Decimalitellen Des Жadicanden neut Gruppen und feße mit Diejen bie Жednung fort， Bis man für bie gejudte Wurzel io viel Decimalitellen gefunden Gat， alk die im eingelnen Falle erforderlidye Senauigfeit verlangt．

In gleider Weife findet man bie Quabratwurzel auz einer nidy quabratijden ganzen Bahl，inbem man berfelben Durd $\mathfrak{2} \mathfrak{n}=$ Gängen von શullen $2 n$ Decimalfitllen giebt，wenn Das शejultat bis auf eine Eintgeit der n ten Decimale genau gefunden twerden foll．

Uebrigens ift bie $2 n$ wentung von $2 n$ Decimalfellen bes $\Re a b i c a n b e n ~ z u r ~ © e=~$ ftimmung bon n Stellen ber witree nidft nothmenbig，benn ba bas Suabrat ber für irgeno eine Stelle neu gefunbenen Biffer ber 2 gurzel auf eine 2 njabl ber
 fiditigt bleiben．Man bat bann mur mit $2 x$ zu dividiren unb Diess zu mieberbolen， inbem man bei ieber folgenben Divifion eine Siffer bon ber refiten ફanto aub bom Divijor abitreidt．Mran nennt biejes Berfabren bie abgefürzte \＆uszieflung ber Duabratwurzel．Soll ${ }_{3}$ ．B．$\sqrt{2}$ auf 7 Stellen beredfut werben，fo ergeben fid bie orei Iegten Stellen burci）blobe Divifion，wie aus folgenber थusfübrung diefés Яeitpiels näher 子u erfeben iti．

Reidt，Elemente der Mratbematix．I．

Die 尺uabratworzel aus cinem gemeinen Brudje fann nad) $\$ 23$ (72) Durd $\mathfrak{A l}^{2}$ zieben zweier \mathfrak{F} urzeln und Divifion Derfelben gefunben merben. Sif Der Nenmer fein volfitändiges Suabrat, io fann man, um die Divifion mit einer irrationalen 3 afll zu vermeiben, fuvor ben $\mathfrak{B r u d}$ io erweitern, Daß́ Der Remter quabratiid wird, was immer Durd Erweiterung mit Dem Menner felbit möglidid ift.

Bequemer ift in Der Ћeget Die Bermandlung Des gemeinen Brudjes in einen Decimalbrud und Æadicirung Des Yeß̧teren. WSirb Kierbei ber Radicand ein periodijder Decimalbrud, weldjen man in abgefürzter Form berwendet, io barf man nidyt fullen anbängen, jondern muß bie feblen= Den Stellen mit Den Biffern Der Weriode befeken.
(5benio bari man bei Dem \{uszieben Der Duabratmurzel aus einer in Form eines abgefürzten Decimalbrudess gegebenen irrationalen Baht nidt \Re Hullen anbängen, fondern muf bie feflenden Biffern Diejes Decimal= brudjes zu beftimmen fuđjen.
 orbne man Diefess zunädjit nad einer §auptgröße und jude dann, wie oben bei beftimmten 3 ahlen, Die Werthe von x, y, z, \ldots io zu beitimmen,

anmerfung. Sur leģten Siffer, weldhe man von einer irrationalen Quabratwurgel beftimnt, nimmt man bieienige, bei weldier man bem vorber= gebenben Reite am näditen fommt.

b) \mathbb{C} ubikwur ${ }^{2}$ ain.

Der Cubut einer cingifirigen Bahl ift ein=, zwei= ober breiziffrig, ba er zwifiden $1^{3}=1$ und $10^{3}=1000$ liegt; Der Eubus einer zweiziffrigen Зaht ift vier= bis fedjaziffig, u. §. w. AHMgemein: Der (Eubus ciner n ziffrigen $3 a \mathfrak{k l}$ ift $3 n-2=3 n-1=$ oder $3 n=$ ziffrig, Dem Derjelbe liegt zwiidjen $\left(10^{n-1}\right)^{3}=10^{3 n-3}$ un§ $\left(10^{n}\right)^{3}=10^{3 n}$.

Daker ift ungetehrt Die Eubitwurgel aus einer ein＝Bis Dreiziffrigen Bahl einziffig，Die Cubitwurzel aus einer vier＝bis fedjzziffrigen Zabl zweiziffrig，u．1．m．，aflgemein，Die（Subifmurzel auts einer $3 n-2=$ bis
 murzel aus einem gegebenen ケadicanden，wenn man die Siffern Deふె lebteren von redita nad）lints in（Fruppen bon je brei Siffern theilt und
 bann als eine bolffändige gilt，wenn fie mur eine ober zwei Biffern entgält．

Die（Gubitwurzel aus einer ein＝bis breiziffrigen Bahl findet man unmittelbar burd ©ergleiduung mit Den befannten Euben Der einziffrigen 3ablen．

Die Cubitwurzel aus einer vier＝biz jedzziffrigen Baht hat bie form $10 x+y$ ；Daber ift Der Rabicand gleid）

$$
(10 x+y)^{3}=1000 \cdot x^{3}+3 \cdot 100 x^{2} \cdot y+3 \cdot 10 x \cdot y^{2}+y^{3}
$$

Wieraus folgt für Das શuszieken Der Eubifwurzel Die ケegel：
Wan beitimme x io，Daß x^{3} Der exjten Soruppe Des，wie vorber angegeben，eingetbeilten \mathfrak{R} adicanden（D．h．Der \mathfrak{U} naahl ber vorkandenen Taujenber）möglidjit nate fommt（okne jedodid größer als Diejelbe zu jein）， und ziebe x^{3} von Diejer ©fruppe $\mathfrak{a b}$ ．Bu Dem etwa Gleibenden $\Re \times j$ fe ziegt man bie nädfite Bifferngruppe des ケadicanden Gerunter，beftimut y fo， Dañ $3 \cdot 100 \cdot x^{2} \cdot y$ Dem io erhaltenen ganzen \Re fefte müglidyjt nake fommt，mas burd Divifion mit $300 x^{2}$ in Diejen Rejt gejdieft，und jubtrahirt $300 x^{2} y$ ，jodann $30 x y^{2}$ und idfle戶lidy y^{3} ．Jit Der Tadicand ein volfitandiger 『ubue，jo wirb hierbei zulegt fein Meft bleiben．Ergiebt fidd，Dā̄ $30 x y^{2}$ Doer y^{3} größ̄er wird，alz Derjenige \Re Reft，von weldjem eş abzuzieben ift，to bat man für y eine zu grope Sahl genommen und Daker mit Der nädit flemeren Yafl Die Rechnung zu wieberbolen． Die Gactoren 100 und 10 werden fürzer meggelafien；man rüdt die Bablen entipredifend ein．

Die 2ubbehnung Dieieß Berfahrens auf mebr alz jedjzzifrige Bablen geidjiegt in äbnlider Weife，wie oben bei Den Duabratwurzeln．Sie grïn＝ Det fidd Darauf，Dā $(100 x+10 y+z)^{3}=\{10 \cdot(10 x+y)+z\}^{3}$ $=\left\{10 x_{1}+z\right\}^{3}=1000 x_{1}^{3}+3 \cdot 100 x_{1}^{2} \cdot z+3 \cdot 10 \cdot x_{1} \cdot z^{2}+z^{3} \cdot \mathrm{ijt}$ ．

$$
\begin{aligned}
& \overbrace{x_{x y} y}^{x_{2}}=u
\end{aligned}
$$

$$
\begin{aligned}
& 3 x^{2}=12 \overline{63} \mid y=5 \\
& 3 x^{2} y=60 \\
& \left.3 x y^{2}=\frac{15 \emptyset}{63} \right\rvert\, y=4=4 \\
& 3 x^{2} y=\frac{48}{156} \\
& 3 x y^{2}=\frac{96}{606} \\
& y^{3}=64 \\
& 3 x_{1}^{2}=1728 \quad 5426 \mid z=3 \\
& 3 x_{1}{ }^{2} \cdot z=5184 \\
& 2422 \\
& 3 x_{1} \cdot z^{2}=648 \\
& 17748 \\
& 3 x_{2}{ }^{2}=\left.177147\right|^{\frac{z^{3}=}{} \quad 27} \\
& 3 x_{2}{ }^{2} \cdot u=177147 \\
& \begin{array}{r}
3 x_{2} \cdot u^{2}=\frac{729}{1} \\
u^{3}=1
\end{array}
\end{aligned}
$$

Die Fegeln für Die 21wziehung Der ©ubitwurzelt auß Decimat= Grïdjen, jowie aus æabicanden, weldje feine volfiändigen Suben find, aus gemeinen Brüdjen und aus Budjfabenpolynomen find analog ben entipreffenden \Re egeln für bie ఇuabratwurzelnt, mur tritt Gier überall bie Dreitheilung an Die Stelle der Bweitheilung.

c) Guätere Murzelu.

Die Berechnung won Whuzeln mit Göberen Exponenten als brei geldieft in analoger Weife, wie bie Der Quabrat= und Cubitmurzeln. $\mathfrak{M a n}$ findet allgentein, daß bie $p^{\text {te }}$ Sotenz einer $n=$ ziffrigen $3 \mathfrak{a b l} p n-$ $(p-1)=$ 6iß $p n=$ ziffig, Die $p^{\text {te }} \mathfrak{W H u z e l}$ aus einer $p n-(p-1)=$ bis $p n=z i f f r i g e n$ Babl aljo $n=$ ziffrig ift, Daber man Den Radicanden einer $p^{\text {ten }} \mathfrak{W u r z e l}$ in ©ruppen zu ie p Biffern zu theilen hat. Die $\mathfrak{A} u \mathfrak{F}=$
 Multiplication für jeden einzelnen fall zu entwiféelnde gorntel.

Sif Der Exponent einer Wirzel cine zuammengejeţte Bahl, jo fant man dieferbe burd) Berlegung bes Exponentent in ein Froduct und 2tnwen= Dung von ©fi. (77) in $\$ 23$ auf $\mathfrak{W u r z e f n}$ niederer Grade zurüdfiübren.

 (Subitworzel, $6^{\text {te }}$ Durd) $\mathfrak{2 l a s j i e h e n ~ e i n e r ~ \Omega u a b r a t : ~ u n d ~ c i n e r ~ (~ © u b i t w u r g e l , ~}$ alfgemein alle Wurzeln, Deren Exponenten Die Form 2^{n}, ober 3^{n}, oder $2^{n} 3^{m}$ Gaben, Durdi mieberbolte $\mathfrak{A l n w e n b u n g ~ v o n ~ \Omega u a b r a t m u r z e l t ~ o b e r ~}$ Subifwurzeln beredfnen. - Die $\mathfrak{A l f g a b e}$ Der Bered)nung keliebiger Wurzeln reducirt fid Demnad auf die Bebanolung foldaer Wurzeln, Deren (Exponenten Brimzahlen find.

Man vergl. ©ap. V, § 30.
§eis § 50-54. Barbey XV.

V. Capitel.

£ $\mathfrak{y} \mathfrak{y} \mathfrak{r} \mathfrak{i t y} \mathfrak{m} \mathfrak{x}$.

§ 28. Ertlärungen.

Rogarithmuz einer $\mathfrak{B a h l}$ a zu einer $\mathfrak{B a f i t} b$ ift der Exponent, mit Dem die $\mathfrak{B a f i z}$ potenzirt merDen muణ, um die $3 \mathfrak{a h l}$ a zu erhalten. Man fareibt bemferben $\log ^{b} a$ ober audi $/_{b}^{a}$ und lieit , Sogaritymue vont a zur $\mathfrak{B a j i z} b^{\prime \prime}$, oder ${ }^{b} b=$ Sogarithmus von $a^{\prime \prime}$. Die Zaht a beiß阝t Der Iogarithmand voer Numerus $(a=$ num. \log. $a)$.

Das Logarithmiren, D. i. Daş Beftimmen Deş Wertheş. eineß̉ Sogarithnnus, ift alio, wie das Radiciren, eine dem ßotenziren entgegen= gefeşte Dperation.
 Den Exponenten beftimmen. - Daß bie beiben $\mathfrak{U m f e f f r u n g e n ~ b e s ~ F o t e n z i r e n s ~}$ fiid nidut, wie bei ber zobsition und Multiplication ber Foall war, zu einer
 gleid) b^{a} itit.

Die vorftebende Errförung Deß ßegriffe eines §ogaritbmus ift aub̄= gejprodien in Den Formeln:

$$
\begin{align*}
& b^{\log ^{b} a}=a \tag{91}\\
& \log ^{b}\left(b^{a}\right)=a \tag{92}
\end{align*}
$$

Was erbält man, wenn man bie Bafis eines Rogarithmus mit biejem poten= zirt? WBem if ber Logarithmus einer $\Re_{B o t e n z}$ ber Bafis gleid)?

马uiäbe. Jnabejondere erbält man:

$$
\begin{equation*}
\log _{a} b=1, \text { Derm } b^{1}=b \tag{93}
\end{equation*}
$$

$$
\begin{equation*}
\log 1=0, \text { бenn } a^{\circ}=1 \tag{94}
\end{equation*}
$$

$a>1)$.

$$
\begin{equation*}
\log _{a}^{a} 0=-\infty, \text { benn } a-\infty=\frac{1}{a}=\frac{1}{\infty}=0(\text { went } \tag{95}
\end{equation*}
$$

அnmerfung 1：彐uŝnafment find $\log 1$ uno $\log ^{0} 0$ ，weldje jebe beliebige Zaht bebenten fömen．Manum？－ $\log ^{1}$ a unt $\log ^{0}$ a โafien fidy butrd）feine enoliden Bablen baritellen，bie（Fing und bie Stull eignen fid）alfo nidit zut Bafto von Logarithmen．

Onmerfung 2：Der Eogarithmus bon a 子ux Bafis b ift mux bann eine （ganze ober gebrodjene）rationale $\mathfrak{Z a h l}$ ，wenn a eine volffätoige Fotenz von b ift．Sit bies nidft ber Fall，wie 子．B．bei $\log ^{2} 3$ ober $\log 2$ ， 1 t ．Dgr．，fo ift ber $\mathcal{L o g a r i t y m u s ~ e i n e ~ i r r a t i o n a l e ~} \mathcal{S a b l}^{\mathfrak{a}}$ ，fann aljo nur nüberung weije，jeboch bis §u jeben beliebigen ©rabe ber $\mathfrak{A n n a ̈ b e r u n g , ~ o u r d ~ e i n e ~ r a t i o n a l e ~} \mathfrak{Z a b l}$ angegeben toerbent．§eis § 56．Barbely XVIII A，1－3，31－32．

§ 29．\＆efrriäge．

 fidid bie Regetn：

$$
\begin{align*}
& \log _{m}^{m}(a b)=\log ^{m} a+\log ^{m} b, \tag{96}\\
& \log \frac{a}{b}=\log a-\log b, \\
& m \\
& \log \left(a^{b}\right)=b \cdot \log ^{m} a, \\
& \log \sqrt[b]{a}=\frac{\log a}{b},
\end{align*}
$$

welde fiab reidit in Worte faffen Iafien．
Beweife：Botenzirt man die Bajit m mit $\log a+\log b$ ，jo erbält man nady（58）：$m^{\log ^{m} a+\log ^{m} b}=m^{\log ^{m} a} \cdot m^{m} \log _{b}$ ，voer nad）（91）：a．b ， alfo ift Der Exponent，momit m potenzirt werben muघ，um $a \cdot b$ zu erbalten， D．i． $\log _{m}^{m}(a b)$ ，gleidy $\log _{m}^{m} a+\log _{m}^{m} b$ ．－Ebenjo finbet man $m^{\log ^{m} a}-{ }^{m} \log _{b}^{m}$
 lidyer \mathfrak{A} rt find Die Beweife ber beiben übrigen formeln mit §ülfe ber ©Steidungen（60）und（78）zu führen．

20merfung 1：fiur ben Rogaritbmus einer ©umme ober ciner Differeus giebt eş feine einfadien $11 m$ mormungen．
 megh als zwei 3 ablen zufammengejeģt find，erweitern．So it $z . \mathfrak{B} \cdot \log (a b e \ldots)$ $=\stackrel{m}{\log a}+{ }^{m} \log b+\log ^{m} c+2 c, \log ^{m} \frac{a b}{c d}=\stackrel{m}{\log a}+\log ^{m} b-\log ^{m} c-\log ^{m} d$ ， น．bgl．m．Ђ̧eī§ § 57 ．Warbey XVIII，A $35-36$, B $1-44$ ．

§ 30．Sagatithmenfyteme und ifre Anmendung．

Sit man im Stanbe，zu jeder belfebigen Bahl a Den Zogarithmuß für irgeno eine Bajiz b mit Leidftigteit（ $\mathfrak{3}, \mathfrak{B}$ ．mittelit einer oazu beredaneten Tabelle），jowie umgefefrt zu einem foldjen Logarithmus bie Bakl a（ben
 weitläufige Meultiplicationş uno Divifionzanfgaben, fowte Fotenzirungent und Radicirungen auf eine bequeme W̧eife auszufübren, indem mant zu= nädyf Die Logarithmen Der gejudften Zablen und Dant zu Diejen Die Bablen jelbit beftimmt.

Die Sujanmenftellung ber Zogaritgmen affer Bablen für eine und Diefelbe Bafiz beibt ein Logarithmeniyjem. (f: giebt io viele Loga= rithmenjyjtente, ats man veridjebene Bajen annelymen fann, ס. h. untend= lid, viele. Snt Sjebraud find jedod nur zwei Derjelben, nämlidy Daş jogenannte natürlide ober Meper'fide Sylem, Defien (Srundzafl Die irrationafe 3 ahk $e=2,7182818 \ldots$ ift, umb bas gemeine ober $\mathfrak{B r i g g i j d e}$ Syftem, Deffen Grundzabl 10 ift. Die Rogarithmen Des̉ Yegteren Syftents
 tbeil angegeben ift, und ja)ledftbin mit \log (orne $\mathfrak{A l n g a b e}$ Der $\mathfrak{B a i f z}$) be= zeidunet.

Die Zafefn ber gentenen Zogaritgmen, weldje von veridjiedenen Matgematifern beredynet oder heransgegeben find (z. B. Jenry Brigg ,
 enthalten bie Logarithmen aller ganz_{z} en Bablen von 1 bis zu einer be= ftimmten Grenze (über weldye letetere hinaus feine Bablen in Denjenigen
 werden folfen). Da die Mehrabll diejer Logaritgmen irrationale Bahlen find, io werden biefelben in Jorm abgethrzter Decimatbrïdje angegeben. Daker tömen bie Nedmungen mit Logarithmen nidat in allen Fällen
 von der $\mathfrak{A l n z a h l}$ Der Decimalitellen abbängig, welde Die Tafeln von dent
 genïgen fünfitellige \&ogaritgmen bolljtändig.

Jeder jolde Sogarithmus bejteft aus zwei ఇheilen, nämlid ber 3 ahl vor Dem Decimaffomma (Den (5anzen), oder Der (Eharacteriftif (Renn= ziffer) und Den Decimalitelfen oder ber Mantilie.

Lefriab: Im Briggijden Sogaritymeniyitem ift bie Cbaracteriftif
 Der Biffern Der Yeß̧teren.
$\mathfrak{B e w e i}$: $\mathfrak{F u}$ ur Die Bafiz 10 ift $\log 1=0, \log 10=1, \log 100=2$, $\log 1000=3 \mathfrak{u}$. 1. w. SWe cinzififigen ganzen Bahlen liegen zwifden 1 und 10, aljo bie Sogaritgmen Derjelben zwijden 0 und 1 (Dent went in $b^{x}=a, x$ zunimmt, fo wädjp aud a und umgeffegrt), ifyre (5haracteriftif ift alfo gleid) গull. (Eberio liegen alle zweizififigen Bahlen zwifden 10 unto 100, ifre Sogarithmen alio zwifden 1 und 2, alfo ift Die Efaracteriftif ber lekteren gleid, 1. In Diejer Weife fann man beliebig weit fortfabren.

AHgemein: YHfe nififigen Bablen Yiegen zwiidjen 10^{n-1} und 10^{n}, ifre Logaritgnten alpo zwifiden $\log \left(10^{n-1}\right)=n-1$ und $\log (10)=n$, alfo ift ibre Characteriftie $n-1$.
\mathfrak{Y} nmerfung: Dater fann in ben Zajeln Det Briggifden Qogaritgmen bic Sbaracteripifif überall meggetafien werben, ba mant fid biejefbe ieberzeit reidt ergängen fann.

Zegriak：Die Briggijajen Zogarithmen aller Baflen，welde burd） Wultiplication oder Divifion mit 10 oder Fotenzen von 10 auß einander abgeleitet werben fömen，habet Diejelbe Mantifie．

Beweib： $\log \left(a \cdot 10^{n}\right)=\log a+\log \left(10^{n}\right)=\log a+n$, $\log \left(a: 10^{n}\right)=\log a-\log \left(10^{n}\right)=\log a-n$ ．
Die 2lobition ober Subtraction won n Sanzen wirft mur auf bie （5haracteriftit．

3uiak 1．Die Sogarithmen affer ganzen Bablen，welde fid mut burd）angebängte Nulfen von cinander unterideiDen，Gaben Diejelbe Man＝ tiffe．Daber fann man die Mantiffen aller Bablen mit wentiger alB n Biffern bei Den Sogarithmen Der n ziffrigen Bahlen finden，und da ferner bie Ebaracteriftit fidi nad dem vorigen Rebriak bejtimmen räpt， To brauden Die Tafctu mur die Mantifien Der gibditziffrigen von ben＝ jenigen $3 a \mathfrak{b l t e n}$ zu entbalten，für welde fie bejtimmt fint．

3 亿iak 2．Der Logarithmu eines Decimalbrudj bat diefelfe Man＝

 Decimalbrud ein umädter ift．Jour einen äd⿸ten Decimalbrud̆ erbailt der Rogarithmus eine negative Gharacteriftif von joviel Ginbeiten，ala 刃aullen vor der geltenden Biffern ftehen，cimijulieflidy der Sull vor bem Romma． Diefe negative Sharacteriftif wiro Der Mantifie－welde auBerbem cine Sull vor bem Romma erhält－in Form eineß Subtrabenous angebängt．

3uiak 3．Sit umgefehrt die（Sharacteriftif eines gegebenen Roga＝ rithmus 0 oder pointio，io ift Der 刃umerus größer als 1 ，fann alio in Der す̌orm eines̉ unädten Decimalbrudiz angegeben werben，Deffen ঔanze eime Biffer mefr haben，ata die（Sharacteriftif Einheiten hat．Ift bie Sharacteriftit negatio，io ift Der 刃umeruß ein ädter Decimalfiud，weldyer mit io viel Nullen（einidflieplid）Der vor bem תomma itefenten）beginnt， als Die Characteriftif Einkeiten hat．

Зufak 4．Der Sogaritymus eines gemeinen Brudes ergiebt fīk nad）（96）ala Differenz ber \＆ogarithmen jeines Bählers und jeires Menners．Der \＆ogarithmus eines ädten Brudjes ift negatio．

Regative Sogarithmen verwendet man in Der Reduman，indem man fie burd joldye mit pofitiver Mantifie und negativer Ebaracterifitit erfegt． 3u Diefem 3weffe aboirt man zu Dem negativen Qogarithmus Die nädjit Göbere ganze 3 abll und fügt Dem erfaltenen pofitiven Refultat Dieje leb̧tere Bahl wieder als negative Sharacteriftit $3 u$ ．

Wit jolden balb negativen Qogaritbmen rediget man nadb Den für Differenzen geltenden Regeln．Fallz bei Dem Subtrabiren zocier \＆oga＝ rithmen die Mantifie ber Differenz negativ mürbe，vermebrt man den Minuendus um io viel ganze（Eintheiten，aļ nöthig find，Damit bie Man＝ tiffe der Differenz pofitio werde，und fügt Dann eben fo viele（Einbeiten als megative Sharacteriftif zu，oder vermehrt bie etro idjon worbandene negative Sharacterifitif um jo viele（Finkeiten．

Silt ein Qogarithmus mit negativer（Sharacteriftif Durd）eine Baht zu Divibiren，io vermeiDet man Das Entifehen einer gebrodfenen negativen（Eba＝ racterifit，indem man jowohl Die Null ver Der Mantiffe Des ju Dividirenden

Sogaritbmus als aud feine negative（5haracteriftif um eine joldae ganze Bafl vergräfert，Daf Tetgtere Durd）Den Divifor theitfar wird．

Sif mit＇einem hafb negativen Qogaritgmus in eine 3 afll $\mathfrak{z u}$ Dividiren， jo muß man zuvor erfteren in einen ganz negativen vertwandeln．

Sebriak：Fiegative Bahlen haben feine Rogarithmen．
Beweiz̄：Denn jowofl 10^{+a} ，als $10^{-a}=\frac{1}{10^{a}}$ find pofitive 3 aflen， oder feine Wotenz einer pofitiven Bafl，aljo aud feine Botenz von 10 fann negatio jein．

Onmerfung 1：Um 凡ednungen，in weldien negative 3 abflen vorfommen， mittelf £ogaritymen ausfü̆fren zu törnen，formt maut bie zu bered）nenben $2(u \notin=$

 ein angefügtes n als joldue fenntlid） 34 maden．

So tann man 子． \mathfrak{B} ．bei ber Maltiplication algebraijdjer Zablen zunädfit bas Frobuct ber abfofuten（slieber mitteff bee Sogarithmen berefinen und bann bem Æejultate bas 刃orzeiffen＋ober－geben，ie nadibem bie 2nzahl ber mit negativen Borzeiden berjebenen $\mathfrak{F a c t o r e n}$（ober ber mit n begeidunten $20 g a r i t h m e n$ ）gerabe ober ungerabe ift．Aelynlid，berfährt man bei Divifionen，it．f．w．
 Gebraudg fint in ben \mathfrak{I} afdn felbet erläutert．

Ђeis $\$ 58,59$ a．Barbet X VIII．A，4－30，CD．

§ 31．Die Berefuning ber Sagarithmen．

Sind die \＆ogaritymen irgent eines Syftem befannt，io fann mit ibrer Suüfe jeder andere Logarithmus reidyt gefunden werben，dem aus $b^{x}=a$ folgt $\log ^{c}\left(b^{x}\right)_{0}=\log _{c}^{c} a$ ，voer $x \cdot \log ^{c} b=\log ^{c} a$ ，alfo $x=$

$$
\log _{b}^{b}=\frac{\log a}{c}=\log a \cdot \frac{1}{\log b}
$$

D．K．man findet Den Rogarithmus einer Babl a für irgend eine Bafiz b ， wenn man Den Qogarithmus Derielben Babl für eine andere Bajis c burd Den Sogaritymus der eriten Bajis b für Die Leछ̧tere c Dividitt，oder went man ifn mit Demt reciproten Werthe $\frac{1}{c}$ diefes leţteren Rogarithmuz multiplicirt $\log b$
Anmerfalng：Inobejonbere crlält man $\frac{b}{\log a}=\frac{\frac{a}{\log a}}{\log b}=\frac{1}{\log b}$ ，ober $\log ^{b} a \cdot \log ^{a} b=1$ ．

Der Multiplicator $\frac{1}{\log b}$ ，mit welfiem bic Qogarithmen zur $2, a f i s c$ multi：
plicirt werben mülien，um bie entipredenben £ogarithmen zur $\mathfrak{B a j i s} b$ ou erbalten， fann baber aud gleid） $\log ^{b} c$ geiekt werben．

Ezs fonmt jomit, um jeden beliebigen Logaritymus berecturn zu tönnen, mur barauf an, zunädift Die Qogaritbmen aller Bablen für irgend eine $\mathfrak{B a f i s}$ oder eine Tafel Der Rogarithmen für irgeno ein beftimmteß
 millefirlid ift, io wirb man fidy für cine foldje entideiben, für meldje bie
 biejem Bweffe α eine febr fleine Bagl, und man jesbe $\log (1+\alpha)=\alpha$, jodás alfo die Bafī c diejer Logaritbmen (ba $c^{\alpha}=1+\alpha$) gleidf) $(1+\alpha)^{\frac{1}{\alpha}}$ ijt. Dann ift $\log (1+\alpha)^{2}=2 \alpha, \log (1+\alpha)^{3}=3 \alpha$, u. ј. w. Die Bablen $1+\alpha,(1+\alpha)^{2},(1+\alpha)^{3}$ u. j. w. bilden eine in jegr tleinen Intervallen fortidreitende Feige, und man erbält jomit auf bieje Weife zunädit eine Tafel Der Rogarithmen, Deren 刃umteri zmar nidft nadf ganzen Bablen, aber Dod mit jebr fleinen Differenzen fortidureiten.

Seşt man z. $\mathfrak{B} . \alpha=0,0000001$, io ift bie Bafis gleid)
$1,0000001^{10000000}=2,71828168$, und man hat:
$\log 1,0000001=0,0000001$
$\log 1,00000020000001=0,0000002$, ober, wem man überall
anf 7 Decimaten abfïrzt,

$$
\begin{array}{ll}
\log 1,0000002 & =0,0000002, \\
\log 1,0000003 & =0,0000003, \\
\log 2,7182817 & =1,0000000, \text { u. і. w. }
\end{array}
$$

Die auf dieie Weife erbaltenen Bablen geftatten mun, bie zwifden
 verfabren mit Dem erforderliden Srabe der Sienauigfeit zu beitinnten.

Anmerfung: Mimmt man α als umendidf flein an, jo erbălt bie in biefent Falle mit e begeid)nete Bafis - wie in ber höheren Mrathematif gegeigt wiro ben Werth $2,718281828459 \ldots$, und bie zugebörigen Qogaritymen find in biefem Fralle bie oben erwähntent "natürlidifer" Zogaritymen. Die Göthere Matbematif giebt zugleid, Methoben zur Beredfung ber \&ogarithmen, welfie bequemer fint, ala bie oben geidilberte unt baber bie fonft nodisu biefem Bwedt abgeleiteten elementaren Methoben - welde fämmetliă bebenteno weitläufiger unt mübjamer fint - ent= bebrlid madien. Eine elementare Methobe, weldue bie Miöglidfeeit zeigt, jebert beliebigen \&ogarithmus aut auberthalb ber ॠeibenfolge mit iebem berlangten © ©rab von (Senauigfeit zu beredinen, wiro jebodi fpäter ($\$ 44$) erflärt werben.

Der Factor, mit weldem Die natürlidjen Qogaritgmen multiplicirt werben mïffen, um oie Logaritymen für irgend eint anderes Syftem zu erbalten, heipt der Miodulus diefes Syitem. Der Modulus des Briggi= iă) ভyitema ift $\frac{1}{\log . \text { nat. } 10}=0,43429448 \ldots$ Umgefiefryt erbält mant Die natürliden Rogaritgmen aus Den Briggifden Durad Divifion ber regzteren mit Diejem Miodulus oder Durd Whultiplication Derfelben mit \log. nat. $10=$ $\frac{1}{\log e}=2,30258509 .$.

Barbey XVIII, 33-34, 37-39 u. 2ntb. 4.

VI. Capitel.

§ 32. Bon ben Gileifungen ïbergaupt, ihren $\mathfrak{H m f o r m u n g e n ~ u n d ~}$ ihrer Gintheilutg.

 zweier gleidmerthiger (Strößen Durd) Dā (Sleidbeitzzeiden. Die beiben gleiden ©rößjen heigen bie Sciten Der (Bleidung, und find Diefelfen aus einzelnen Bablen ober Bablformen Durd 9llodition oder Subtraction

Ximerfung: Beibe Seiten einer ©̧leidung, begiefungsweije bie Glieber beriedten, miffien auf bie nämlidfe (Einbeit bezogen fein. So folgt z. B. baraus, bas 5 Mart greid 50 ভgr. fint, nidit $5=50$, wobl aber $5=\frac{50}{10}$, ober $5 \cdot 10=50$.

Da gleidje Bröğen, wenn fie aui gleidye Weife verändert werben,
 (Sleidjem fubtrabirt, (H) eidjes mit Sileidjem multiplicirt, voer (Sicidjes
 Riditigteit einer SHLeidung, zu beiden Seiten einer jolden Dieferbe 3abl abbiren, oder von beiben Seiten biefelbe Bahl (oder beibe von berfelben Bahl) jubtrabiren, jowie beibe Seiten mit berjelben Bahl multipliciren, oder burd) (bezm. in) Diefelbe 3 abl Dividiren Darf.

Jnabejondere folgt Gierauß, dā man mit jeder (Steidung jolgende $\mathfrak{U n}_{\mathrm{m}}$ ormungen vornefmen Darf:

1) Šedes Gftied fann mit veränoertem Worzeiden auf bie andere Seite gejeght (transpponirt) werDen.
 verbunden, io if es bierburd von beiben Seiten fubtragirt morben, war еङ Durdy Das Beidjen - verbunden, fo ift eß zu beiben Seiten abdirt worden, voer ift $A+m=B$, io ift $A+m-m=B-m$, d. i. $A=B-m$, und ift $A-m=B$, jo ift $A-m+m=B+m$, b. i. $A=B+m$.

Beifpiele: $\mathfrak{A u s}(a+b) \cdot c=a c+b c$ folgt $(a+b) \cdot c-a c=b c$, ๙นร $\frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d}$ folgt $\frac{a}{b}=\frac{a d-b c}{b d}+\frac{c}{d}$, , แื $x+7=12, x=12-7=5$, ลนร $y+8=7-y$ folgt $2 y=7-8=-1$.

3 ujab: Ein Gried, weldes auf beiben Seiten einer ©feidung ftegt und Durd Daffelfe 凡edmungszeidjen verbunden ift, fann beiberieits meg= gelaffien merden.

Sit $A+m=B+m$, voer $A-m=B-m$, jo ift $A=B$.
2) Man fann jeden in einem Sifiede einer ©jeiduug vorfommenden Nemmer aus ber ©leidung wegidaffen, indem man beide Seiten (alio јedes (Slied) mit diciem Nenmer multiplicirt.

$$
\text { Sit } A+\frac{b}{c}=D, \text { io ift } A \cdot c+b=D \cdot c \text {. }
$$

Man fant alio aud jämmtlide Menner aus einer (bleidung ent= fernen, indem man beibe Seiten nad und nady mit Den einzefnen 刃ennern, DDer fürzer auf einmal mit Dem §auptnenner multiplicirt.

Beippiele: Int $\frac{x}{4}=3$, 10 ift $x=3 \cdot 4=12$. Int $\frac{a}{2}+\frac{b}{3}=\frac{c}{4}$, io ift $\frac{12 a}{2}+\frac{12 b}{3}=\frac{12 c}{4}$, ober $6 a+4 b=3 c$.

Zujab: Sind beide Seiten einer Sifeiduung Durd eire und Diefetbe Babl dibidirt, to tam man Diejen gemeinidaftliden Divifor meglaffen.
3) Man fann jeden Factor eines Sliedes einer (Slleidung aus ber= jelfen entjernen, indem man beibe Seiten (aljo jedes (s)ied) Durdib Diejen Factor Dividitt.

Sit $A+b \cdot c=D$, io ijt $\frac{A}{c}+b=\frac{D}{c}$.
Beifpiele: $\mathfrak{A 1 \text { Hs }} 4 x=12$ folgt $x=\frac{12}{4}=3$, aus $a \cdot c=d+e$ folgt $a=\frac{d+e}{c}$.

Bujab: Sind beibe Seiten einer (Steidunt mit einem und bem= jelben Factor multiplicirt (haben alle (flieder beiber Seiten einen gemein= idjaftlidjen fractor), to fann man denfelben weglaffen. - Sind bie Seiten einer (Sleiduung Dutotienten mit Demfelben Dividenden, io find die Diviforen einanber gleidy.

Knmerfung: Man beadte jebod, baß man nie mit saull bivibiren barf. Das Multipliciren beiber Seiten mit §ull füfrt aui die zwar ridatige, aber werth= Lofe Gleifung $\theta=0$.
(Eine (Sleidung, in welder bie eine Seite mur eine $\mathfrak{l m f o r m u n g}$ ober Entwifielung ber anderen ift, wie $\mathfrak{o} \cdot \mathfrak{B} \cdot(a+b) \cdot c=a \cdot c+b \cdot c$, oder $a: \frac{1}{b}=a \cdot b$, meldje aljo für jeben beliebigen Werth jeder in ibr enthaltenen unbeftimmen $\mathfrak{B a f l}$ (2 udjfaben) rididig bleibt, heip̆ eine
 Durd bloge limformung und Entwiffelung aus Der anderen gebildet werden fann, welde alio aud) nidyt für jeden beliefigen Wherth jeber in ibr ent= Galtenen unbeftimmten Babl ridftig bleiben, beigen Beftimmung $=$ gleidungen. Diejelben gelten alfo nur, wenn einer ober mebrerent ifrer unbeftimmen Bablen beftimmte Werthe beigelegt werDen, mie z. \mathfrak{B}.

Die (ficeidung $x+5=7$ nur für $x=2$, Die (Gleidung $2 \cdot y=8$ nur für $y=4$. Man fflegt Dieje Grögen bie unbefannten (5rb̈ben, Doer id) retzen Buditaben Des 2utphabets (x, y, z) zu bezeidnen, während Bablen, Denen jeder beliebige Werth beigelegt werben Darf, in Der Regel burd) Die
 gleidung auflofen, heigt Durd Umformung Derferben Die Werthe ber Unbefannten ermitteln, weldje ify genügen. Dieje Werthe nemt man Die Wurzeln Der ©゙leidung. Jm folgenden werden, iofern nidjt Das Gegen=
 Die $\mathfrak{U n b e f}$ anten mur alz Beftandtheile einer Summe oder Differenz, eineß Broducts oder eines Suotienten, DDer enolidi als Bajen won Fotenzen vorfommen. Wsir ifliegen alfo vorläufig afle (bleidungen aus, in benen
 cand, Qogarithmand u. Dergl. vorfommt. - Cfintheilung ber Gifeidungent in algebraijde und trankicendente. Eintheilung fer algebraijden in rationale und irrationale. - NHgebra.

Man theilt bie Beftimmungghleidungen nad ber \mathfrak{M} naghl ber in ifnen enthaltenen $\mathfrak{U n b e f a n t e n}$ it foldge mit einer, zwei voer mefreten $\mathfrak{H n b e f f a n n t e n ~ e i n . ~}$

Die Glieder einer ©leiduurg werden unteriditeden in foldue $0^{\text {ter }}, \mathbf{1}^{\text {ter }}$, $2{ }^{\text {ter }}, \ldots . n^{\text {ter }}$ Dimenfion. (Fin ©lite ijt von Der $n^{\text {ten }}$ Dimenfion, wenn Daffelbe n unbefannte Factoren enthält (weldje unter fidi) veriditeden oder zum Theil ober fämmetid) gleid jein fönten. Botenzen unbefannter (5rögen.).
(Fin ©ilied, weldjes feine Unbefannte enthält, ift aljo von der $0^{\text {ten }}$,
 Der $1^{\text {ten }}$, ©fiteder mit $x^{2}, x \cdot y$ find von Der $2^{\text {ten }}$ Dimenfiont, 11.1. w.
 Durd folgenbe utmformungen Derfetben vorbereitet:

1) Man löt alle תlammern auf, weldje cinc unbetannte Grö̈be enthalten.
2) Man fidafft alle Menner ats Der (Sleiduty.
3) Man bringt affe ©ifieder, weldje (eine ober mefrere) Unbefannte enthalten, auf bie cine Seite, affe übrigen ©rlicder auf Die andere Seite Der-(Eleidung.
(Fine (lleidung, weldfe nadi Diejen $\mathfrak{H m j o r m u n g e n}$ wenigitensิ ein Silied von Der $n^{\text {ten, }}$, aber feins von einer Gobgeren Dimenfon entgät, beift eine Gleidunt womt $n^{\text {ten }}$ Srabe.

Eine (Sileidung beigt aljo vom eriten ©rabe, wemn fie fein Broduct und feine Fotenz von Unbefannten enthält, fie beigt vom zweiten Grade, wenn fie das Suabrat einer oder ein Product zweier unbefannter ©rößen, aber feit Glied von einer Göberen Dimenfion entgält, u. f. w.

In Folgenden werden zunädit nur ©ileidungen deß erften und zweiten Grabes berüdfifidtigt.

§ 33. ©lcidungen erften Crabeg.

Eine (3leidung keißt georbnet, wenn nad Bornabme ber worber angegebenen $\mathfrak{U m f o r m u n g e n}$ nod) alle © Silieber, melde Diefelbe Unbefiannte enthalten, in je ein (Slied (burd) Mbjondern Des gemeinidaftliden umbe= fannten Factorş) zujammengefaßt find.
(Fine georonete ©ileidung erjten Grades mit einer Unbefannten bat Die Frorm

$$
a \cdot x=b .
$$

Diejelbe wirb aujgeloft burd) Divifion beiber Seiten mit Dem Coef= ficienten Der Unbefamnten. Eß̉ ijt

$$
x=\frac{b}{a}
$$

 gefunbenten 23 erthes in biè gegebene ©bleidfung.
(Fine georonete ©fleid)ung erften Grabes mit awei Unbefannten hat Die Frorm

$$
a x+b y=c .
$$

 fannten nidedt Gin, Denn löft man Diejelbe Durd Die Umpormungen

$$
\begin{aligned}
& a x=c-b y, x=\frac{c-b y}{a}, \text { ober } \\
& b y=c-a x, y=\frac{c-a x}{b} \text { auf, }
\end{aligned}
$$

fo entgält der für eine Unbetannte gefunbene $\mathfrak{A u s b r u c t}$ nod) bie andere $\mathfrak{U n b e f a n t e}$, ift aljo nidit geeignet, Den Wherth der eriteren fu beftimmen. Dagegen gelingt Dies, wenn man mit der gegebenen (Sleidung eine zweite zwifden Denfelben Unbefannten verbinbet, voer zum Beredjnen Der Wertbe zweier $\mathfrak{U n b e f}$ annten bedari man zweier (Sleidyungen zwifden Denfelben.
 getajt, inden man zunädit aus Denferben eine britte (Steidung (Die $\mathfrak{F l i}=$ minationggleidung) ableitet, welde eine Der Hnbetgnten nidyt mehr entbält. Man nennt Dieß Das (Eliminiren Diejer Unbetannten und bedient fich für Dafferbe in Der Æegel einer Der brei folgenden Methoden:

1) Die Combinationsmethode: Man leitet aus jeder ber beiden (Sileidungen einen 9 (ußbruct für die zu eliminirende $\mathfrak{l n b e f f a n t e ~} \mathfrak{a b}$, indem man Dieflbe wie eine ©fleidung mit einer llnbefanten behandelt. Die beiden \mathfrak{A} Ußbrüffe jeşt man einander gleid. Man findet \mathfrak{z}. \mathfrak{B}.

$$
x=\frac{c-b y}{a}, x=\frac{\gamma-\beta y}{\alpha}, \mathfrak{a l j o} \frac{c-b y}{a}=\frac{\gamma-\beta y}{\alpha}
$$

2) Die Subftitutionsmetgode: Man judt nur aub einer ber
 und jubjituirt Diejen Darn an Der Stelle Derjelfen in ber anderen Stei= () u Itg, 3 . \mathfrak{B}.

$$
x=\frac{c-b y}{a}, \alpha \cdot \frac{c-b y}{a}+\beta y=\gamma
$$

3）Die（\＆nglifale，ober Die MDDitions＝und Subtractionる＝ methode：Man bitbe Das fleinite gemeimidajtlide Bielfadje Der（Soeffi＝ cienten Der zu eliminirenden Unbefannten und multiplicire beibe Seiten einer jeben ©leidjung mit Demjenigen factor biejes Bielfadjen，weldjer ifrem ©oefficienten der genamten Unbefannten feblt．Darauf abdire oder ¡ubtrabire man bie io umgeformten（Gleidungen，je nadiom die Worzeiden Der in Folge Des oken genamnten Berfabrens mit gleiden Evefficienten verfehenen ©lieder ungleid oder gleid find；z ． \mathfrak{B} ．

$$
\left.\begin{array}{rrr}
9 x+20 y=78 \\
15 x-8 y=54 & -3 & \text { ober } \\
\hline 45 x+100 y=390 & & 9 x+20 y=78 \\
45 x-8 y=54
\end{array} \right\rvert\, \cdot 5
$$

AMgentein am beften nadid folgendem Sdjema：

$$
\begin{aligned}
& a x+b y=c \mid-\beta \\
& \alpha x+\beta y=\gamma-\alpha-b \\
& x(a \beta-b \alpha)=c \beta-b \gamma \\
& x(a \beta-b \alpha)=a \gamma-c \alpha, \mathfrak{u} . \mathfrak{j} . \mathfrak{w} .
\end{aligned}
$$

Sat man auf eine Diejer \mathfrak{A} rten（oder auf einem pomftigen Wiege） bie Efliminationşgleidung erhalten，io löft man Dieje auf die in ifr nod enthaltene $\mathfrak{U n b e f a n t e}$ auf．Die zroite $\mathfrak{H n b e f a n n t e}$ findet man in ber Regel am einfadjften burd）Subjtitution Deş für Die erfte erbaltenen Werthes in eine ber gegebenen（georoneten）（Sileidungen und 2 Aufbien Der fo erbaltenen ©leidjung auf bieje zweite Unbefomte，Dod fanm man auळ）Das © Eliminationßberfabren in Beziefung auf bie andere Unbefannte wiederbolett，und man erhält nadi 3）bierburd auf bequeme Weife bie allgemeinen Rejultate

$$
x=\frac{c \beta-b \gamma}{a \beta-b \alpha^{\prime}}, y=\frac{a \gamma-c \alpha}{a \beta-b \alpha^{\prime}}
$$

bei welden man bie ©leidgeit Der Menner und bas übereinftimmente Bitbungsgejek Der Bäbler und Nenner beadjte．

Itmerfung：\｛us ben sheidungen $x+y=s, x-y=d$ folgt burd 2tbbition umittelfar $2 x=s+d$ ，alio $x=\frac{1}{2}(s+d)$ ，unt burd）Subtraction $2 y=s-d$ ，alfo $y=\frac{1}{2}(s-d)$ ．

If alio bie Summe s und bie Differenz d zweier ©゙röben gegeben，fo it bie eine bon biefen gleid，ber halben Summe，bie anbere gleidy ber balben Differenz ber gegebenen Summe und Differenz．
 Unbef̃anten bebarf man ebenjovieler（Sleidungen，alz unbefannte （Srögen vorbanden find．

Der Beweiz folgt Darans，Dā̄ bei $\mathfrak{B e r m e f r u n g ~ b e r ~} \mathfrak{A} \mathfrak{Z a b l}$ der Unbefanten um eine，aud）eine $\mathfrak{B e r m e f r u m g ~ b e r ~ (ふ i l e i d u m g e n ~ e r f o r b e r l i d) ~}$
witb, weil anderen grallz die für Die übrigen umbefamten Gorögen gefun= Denen $\mathfrak{A} u$ bbrüufe Die neue Unbefante enthalten müffen. Man verbindet Die gegebenen (Sleidungen, nadibem fie georomet find, paarweife und bilbet ลus jedem Baare, mie oben angegeben, eine Ěliminationğgleiđuung, indem man jedesmal Diefelbe Unbefannte eliminirt. 历at man auf Dieje Wiseife ลนฌ n (§) eidungen mit $n \mathfrak{U n b e f a n n t e n} n-1$ neue (Sleidungen mit $n-1$ \mathfrak{U} nbefannten erhalten, to verfäbrt man mit Diejen auf gleide $\mathfrak{W B e i f e}$, indem man $n-2$ (Eliminationsggleidungen mit $n-2 \bigcup_{n b e f a n n t e n ~ b i l o e t . ~}^{\text {m }}$ Man fäbrt Giermit jo lange fort, bis man eine (S) Ceidung mit einer $\mathfrak{U n}=$ befannten erbält, Die man dant auf Dieje lebtere aufl̈̈lt. Den gefundenen Werth jubftituirt man an ibrer Stelle in eine Der ©fiminationsgleidungen mit zwei $\mathfrak{U n b e f a n n t e n ~ u n d ~ b e f t i n m t ~ b i e r o u r d ~ D i e ~ z w e i t e ~ U n b e f a r n t e ; ~ b a n t ~}$ fubfituirt man bie beiben mun befanten Werthe in eine ber Sleidungen mit Drei Unbelannten, und fährt in Dieier Weije fort, Gis Die Wertbe fämmtlidier n Unbelfanten gefunden find.

Soll bie Atufföung gegebener (bleidungen auf mefrere Unbefannte möglid, fein, io müfijen dieje (5teidungen jämmtlid) vont einander unab= Gängig fein, D. G. еद Darf feine Derfetben fide ats einer oder mebreten der übrigen Durd) bloge $1 t m f o r m u n g$ oder Berbindung Derfelben ableiten laffen.

Dern befindet fidi unter ben gegebenen (Sleidungen cine foldee, seldye fitd auss den übrigen ableiten lägt, fo ift Diejelbe Durd legtere von jelbit gegeben und fann nidet ats cine neut, felbitindige ©fleidung gelten. (Der Berjud ber 2 Kufījung führt in foldem Falle auf eine identifaje Sleidung. Daber Darf aud bei ber Elimination von Hnbefannten niemals eine (Eliminationsgleidung burd) Berbindung zweier (Sleidungen gebildet merDen, weldje bereits mittelfar mit einamber verbunden worden find. Stfe n gegebenen ghleidungen müffen zut ©̌imination bemutht werden.

VII. Capitel.

§ 34.

Eine (Sleidung zweiten ©rabes mit einer Unbefannten entbält nad $\$ 32$ Das §uadrat derfelber unt fann auferbem aud sflieder mit Der erften Sotenz und Silieder ohne bie Unbefannte entbalten. Sie Keigt volffändig, wemn alle brei Atrten bon Bitiedern vortommen, unvolfjändig, went eine Der Yeß̧teren ober beibe fehlen. Die bollftandige quadratifde (Sfeidurg heipt georbnet, wemn fie Durd Alufbien Der etwa borbandenen תlammern, Wegidaffen Der Nenmer, Bujammenfafien ber Stieder jeber einfelnen 2 rt und Dromen Derfelben, endlid) Durd Divifion mit Dem (Eveficienten von x^{2} auf Die Form:

$$
\begin{equation*}
x^{2}+p \cdot x=q \tag{1}
\end{equation*}
$$

$\mathfrak{H m}_{\mathrm{m}}$ eine joldfe georbmete quabratijaje ©fleidung auizulöjen, bringe man ifre linfe Seite auf bie Form eines volfitandigen Qutabrats: $(a+b)^{2}=a^{2}+2 a b+b^{2}$, iǹem man für $p \cdot x, 2 \cdot x \cdot \frac{1}{2} p$ jeß̧t unt zu beiden Seiten ber (fleifung $\left(\frac{1}{2} p\right)^{2}$ oder $\frac{1}{4} p^{2}$ aboirt. Man erbält fo: $x^{2}+2 x \cdot \frac{1}{2} p+\left(\frac{1}{2} p\right)^{2}=q+\frac{1}{4} p^{2}$, $\operatorname{\text {Deer}}\left(x+\frac{1}{2} p\right)^{2}=q+\frac{1}{4} p^{2}$, amb hieraus $x+\frac{1}{2} p= \pm \sqrt{q+\frac{1}{4} p^{2}}$, aljo

$$
\begin{equation*}
x=-\frac{1}{2} p \pm \sqrt{q+\frac{1}{4} p^{2}} \tag{2}
\end{equation*}
$$

Subfitution ber Werthe bon p und q in bie Formel (2) bei jedem jpeciellen Folll fatt jedesెmaliger Witederbolung ber ganzen 2tbleitung.

*§ 35. Dişufitian ber giarmel (2).

Die Formel (2) umfagt alle bejonDeren Fälle volftändiger ober
 liefert fie zwei Werthe für x; eine quabratifide ©Sleidung hat aljo fett zwei Whrzeln.

Sit q pofitiv, fo if $q+\frac{1}{4} p^{2}$ ebenfalla poitiv, gleidutel ob p pofitio ober negatio ift; beibe Wurzeln ber ©leiథung find alfo in diefern Fall reell. Dabei ift für pofitives p die eine ftets negativ, Die andere ftets pofitio (benn $\sqrt{q+\frac{1}{4} p^{2}}>\sqrt{\frac{1}{4} p^{2}}$, b. i. $>\frac{1}{2} p$). Four negatives p, ober für bie Sfleidung $x^{2}-p x=q$ fann bie Frormel (2) Durd $x=+\frac{1}{2} p \pm \sqrt{q+\frac{1}{4} p^{2}}$ erjest werben, und es ift mieder bie eine Wurzel pofitio, Die andere negatio. F̛ür $p=0$, ober für bie ©fleidung $x^{2}=q$, weldje cine rein quabratijde beibt, erbält man, wie aud leidyt unmittelbar zu finden, $x= \pm \sqrt{q}$.

Sit q negatio, io erbait man für die ©leidung $x^{2}+p x=-q$ Die Formel: $x=-\frac{1}{2} p \pm \sqrt{\frac{1}{4} p^{2}-q}$. Sit nun a) $\frac{1}{4} p^{2}>q$, io find beide Wisureln ber (Sleidung reell und bei poitivem p beibe negativ, Eei negativem p beibe pofitio. Sit b) $\frac{1}{4} p^{2}=q$, io weroen beibe Wurzeln einander gleidy, und man hat $x=-\frac{1}{2} p$. Sif e) $\frac{1}{4} p^{2}<q$, fo find beide $\mathfrak{W u r z e l n}$ intaginär. Daffelbe findet alfo aud ftatt für bie reime quabratifde (\#yeidung $x^{2}=-q$, welde $x= \pm \sqrt{-q}$ ergiebt. Jit enblid. $q=0$, jo hat die (sfeidung $x^{2}+p x=0$ bie Murzel $x=0$ und augerdem bie wiurzel $x=-p$.
 aber nur in ber Borausfegung, bā̇ x nidft gleid) शull fei. Man erbalt bant $x+p=0, x=-p$. Die anbere 2 Surjel ber quabratijajen ©fleichung ift ofientar $x=0$.

2nmertung 2: Die (sheidung $x^{2}+p x+q=0$ räह̆t fica feto auf bie Frorm $(x-a)(x-b)=0$ bringen, wobei a und b bie beiben 2 Sutjeln ber Gilei: duing fint. EEs if $p=-(a+b), q=+a b$.

Man fann bierauf eine anbere Methobe ber Mbleiturg ber Formel (2) grïnben. Anmerfung 3: Eine britte Methobe it folgenbe: Man febe in $x^{2}+p x=q$, $x=y+\xi$ und beftimme in ber baburd) entifebenben neuten Gleiduug ben werth)
 ReiDt, Elemente Der Matbematie. I.
mirb，alfo eine rein quabratidde ©leidung bon ber form $y^{2}=A$ entiteht．Dam hat man $y= \pm \sqrt{A}$ ，alio $x=\xi \pm \sqrt{A}$ ．
 Glieb mit ber zweithöditen Foten

Gine fo umgeformte Gleidung ظeibt reducirt．
2nmerfung 4：Aufofung ber（steidungen von ber form $x^{2 n}+p \cdot x^{n}=q$ \＆uxd bic ©ubpitution $x^{n}=y ;(x=\sqrt[n]{y})$ ．

＊§ 36.

（Fine georbnete quabratijde（Sleidung mit $2 \mathfrak{H b e f a n n t e n}$ Gat，wenn fie vollftändig ift，bie Form：

$$
x^{2}+a x y+b y^{2}+c x+d y=e
$$

$\mathfrak{U m}$ aủ zwei folden ©fleidungen bie Werthe Der $\mathfrak{H n b e f a n n t e n ~} \mathfrak{z u}$ finden，fann man fiă Der befanten Eliminationsamethoden（ $\mathbb{S} 33$ ） bedienert．

Man ergält als Eliminationsgleidung in ber そegel eine ©fleidung nom vierten ©rabe，Deren weitere Befanolung augerbalb Der Sirenzen Diejes ¿efrbuđる liegt．Vgl．übrigens $\$ 44$ ．Jin vielen $\mathfrak{F a l l}$ en gelingt es jebod，Die（Fliminationagleidung auf eine foldje eines niederen ©rabes зu rebuciren，fo bás biefelfe aud mittelft der bizher bebandelten Sefren auflösbar wirb．
©s feien 子． \mathfrak{B} ．aus ber ©umme $x+y=s$ unb bem Wrobucte $x \cdot y=p$ zweier $\mathfrak{Z a b l e n t}$ biefe $\mathfrak{Z a f f e n}$ zu finben，to ergiebt bie ©ubfitution bon $y=s-x$ aus ber exfen in bie zweite（bleidung bie quabratifide EFliminationgigleidung $s x-x^{2}=p$ ，affo $x= \pm \sqrt{-p+\frac{s^{2}}{4}+\frac{s}{2}, \text { und ebenio } y=\mp \sqrt{-p+\frac{s^{2}}{4}}+\frac{s}{2}}$ ． Dber man bilbe zunädfit $(x-y)^{2}=x^{2}-2 x y+y^{2}=x^{2}+2 x y+y^{2}-4 x y$ $=(x+y)^{2}-4 x y=s^{2}-4 p$ ，alfo $x-y=\sqrt{s^{2}-4 p}$ ，umb beredine aus $x+y$ und $x-y$ bie $W_{s i e r t h e ~ w o n t ~} x$ und y ．Dber man forgert aus $\$ 35$ ， 2nnmert． 2 ，Dаß x und y bie beiben Wurzeln ber quabratifden ©fleidung $x^{2}-s x+p=0$ jinb．

Beifpiel 2：$x^{2}-y^{2}=m, y(x+y)=n$ ．Man febse
$x^{2}-y^{2}=(x-y)(x+y)=m=x(x+y)-y(x+y)=x(x+y)-n$, alio $x(x+y)=m+n$ ，baber $\frac{x}{y}=\frac{m+n}{n}, x=\frac{m+n}{n} \cdot y$ ，alio $y(x+y)=$ $y\left(\frac{m+n}{n} \cdot y+y\right)=y^{2} \cdot \frac{m+2 n}{n}=n, y^{2}=\frac{n^{2}}{m+2 n^{\prime}} y=\frac{n}{ \pm \sqrt{m+2 n}} x$ ．

Beippiel 3：$x^{2}-6 x y+9 y^{2}-4 x+12 y=-4$ ．

$$
x^{2}-2 x y+3 y^{2}-4 x+5 y=53
$$

§eiz $\$ 73,9 \mathrm{rr} .46$.
Seß̧t man in ber erften biejer chleidungen $x^{2}-6 x y+9 y^{2}=(x-3 y)^{2}$ ； $-4 x+12 y=-4(x-3 y)$ und jobann $x-3 y=z$ ，fo erfält mant $z^{2}-$ $4 z=-4$ ，allo $z= \pm \sqrt{-4+4}+2=2$ ，alfo $x=2+3 y$ ．Seß̧t mant biefon शusbruif für x in bie，zweite Bleidfung ein，to erbält man $6 y^{2}+y=57$
und אierous $y_{1}=+3, y_{2}=-3 \frac{1}{6}$, afio $x_{1}=2+3 \cdot 3=11, x_{2}=2-3 \cdot 3 \frac{1}{6}=$ $-7 \frac{1}{2}$.

Beilpiel 4: (5ci8 § $73, \mathfrak{M r} .18$). $\frac{1}{x}+\frac{1}{y}=\frac{1}{5}, \frac{10}{x y}=\frac{1}{18}$.
2H\& ber eriten Bleidung folgt $\frac{x+y}{x y}=\frac{1}{3}$, alio, went man für $x y$ aus Der zweiten ©leidfung 180 ciniegt, $x+y=\frac{180}{5}=36$. Sieraus und aus $x y=180$ ergebert fich nadi Beifpiel 1 bie Werthe vont x und y.

Dber man lege $\frac{1}{x}=x^{\prime}, \frac{1}{y}=y^{\prime}$ mb berefine zunäđifi x^{\prime} umb y^{\prime}.
 Man multiplicire bie effe Gleidung mit 4 und jubtratire bie io entitebenbe Bleidung bon ber zweiten. Dies ergiebt $11 x^{2}=176, x= \pm 4$. Dałer if $(x+y)^{2}-32=49 ; x+y= \pm 9$, mithin $x_{1}=+4, y_{1}=+5$ ober $-13 ;$ $x_{2}=-4, y_{2}=+13$ ober - 5 .

Qnmerfung: Enthăt cine Bleidung eine ober mefrere unbefante ©frö̉en unter Wurzefzeiden, to muifien biefe Wixzeln zum 3wecte bes Dronens bee
 beibe Geiten ber ©̧leiffung mit einem pafienten exponenten potenzirt. Enthält bie ©bleidfung mur eine foldfe 2 Surgel, io farffe man biefe zunädj) auf eine Seite allein unb potenzite bann beibe Eeiten mit ifrem Exponenten. Enthält bie Glei= finng zwei Quabratrourgefn, io bringe man entweber eine von ifyen ober beibe zufammen auf eine Seite allein unb potensire mit 2. Die bierbutd entfetenbe (Bleidung wird bam nods eine Suabratiourzel entbalten, belde burd) nodmaliges Fotenziren, wie worber gezeigt, entjernt wirb.

2tngang 4. (ffeidungen 3. ©rabes mit ciner linbefannten.
(Fine (blleidung 3. Grabes mit einer Unbefanten beipt georonet, wenn fie auf bie form $x^{3}+a x^{2}+b x+c=0$ gebradit ift. Sie ift bollitändig, wem feiner Der Coefifienten a, b, c gleid) Null ift, anderen= falla, alio wenn eins ober mefrere der 3 letzen (sfieder feflen, heigt fie unvollitändig. Eine (Sleiduitg 3. Grades, welder Das zmeite ©flied fehit $(a=0)$, beipt rebucirt, eine ©fleidung, weldjer Daß stweite umo das Dritte feflen, beißht eine reine ©feidung 3. Sirades.
 if $x^{3}=-a$, alio $x=\sqrt[3]{-a}$.
b) $\mathfrak{A l f o ̈ j}$ ung der reducirten (Sleidung 3. ©rades: $x^{3}+p x+q=0$. Man jeţe $x=y+z$, io ift $y^{3}+3 y^{2} z+3 y z^{2}+z^{3}+p(y+z)+q$ $=0$, oder $y^{3}+z^{3}+3 y z(y+z)+p(y+z) H q=0$, voer $y^{3}+z^{3}+(y+z)(3 y z+p)+q=0$.

Beftiment man null ben W̧erth von z jo, Dā̧ $3 y z+p=0$ mird, jeşt afjo
(1)

$$
z=-\frac{p}{3 y^{\prime}}
$$

To wird (2) $y^{3}+z^{3}+q=0$, ober $y^{3}-\frac{p^{3}}{27 y^{3}}+q=0$, oder $y^{6}+q y^{3}=\frac{p^{3}}{27}$. Seßt man $y^{3}=x^{\prime}$, jo wird $x^{2}+q \cdot x^{\prime}=\frac{1}{27} p^{3}$, alio $x^{\prime}=-\frac{1}{2} q \pm \sqrt{\frac{1}{27} p^{3}+\frac{1}{4} q^{2}}$,
alio $y=\sqrt[3]{x^{\prime}}=\sqrt[3]{-\frac{1}{2} q \pm \sqrt{\frac{1}{27} p^{3}+\frac{1}{4} q^{2}}}$
$\mathfrak{A H}^{2}(2)$ jolgt nun $z^{3}=-q-y^{3}=-\frac{1}{2} q \mp \sqrt{\frac{1}{27} p^{3}+\frac{1}{4} q^{2}}$, arjo $z=\sqrt[3]{-\frac{1}{2} q \mp \sqrt{\frac{1}{27} p^{3}+\frac{1}{4} q^{2}}}$

Mithin itit
(3) $x=\sqrt[3]{-\frac{1}{2} q \pm \sqrt{\frac{1}{2} \tau p^{3}+\frac{1}{4} q^{2}}}+\sqrt[3]{-\frac{1}{2} q \mp \sqrt{\frac{1}{27} p^{3}+\frac{1}{4} q^{2}}}$.

Diefe Formel Keipht die Earbanijaje.
c) $\mathfrak{2 l u f t o}$ fung ber volfitändigen cubifiden ©iciduung

$$
x^{3}+a x^{2}+b x+c=0
$$

Man jeţe $x=y+\alpha$, jo ift

$$
\left.\begin{array}{rrr}
y^{3}+3 \alpha & y^{2}+3 \alpha^{2} & y+\alpha^{3} \\
+a & +2 a \alpha & +a \alpha^{2} \\
& +b & +b \alpha \\
& +c
\end{array} \right\rvert\,=0
$$

Beftimmt man nun Den Werth von α jo, Dáß $3 \alpha+a=0$ witb, feţt alfo $\alpha=-\frac{1}{3} a$, io erbält man für y eine reducirte (jleidung, Die mittelit der Carbanifiden formel aufgelojt werben fann, und hat bann $x=y-\frac{1}{3} \alpha$.

Yit $x=\omega$ eine Wurzel irgend einer cubiidjen (5leidung
$x^{3}+a x^{2}+b x+c=0$, jo ift Die linfle Seite (Das jogenamnte Folynom) Derjelben burd x - ω ofne 凡ejt theitbar.

Denn in Diejem grall ift $\omega^{3}+a \omega^{2}+b \omega+c=0$, und fülhrt man Die angegebene Divifion aus, to ergält man bierdurd für Den Reft Den Werth Suiff. Dafielbe ergiebt fidi aud) Durd Subtraction ber beibent boritelgenden (HLCidfungen, Demt in $\left(x^{3}-\omega^{3}\right)+a\left(x^{2}-\omega^{2}\right)+b(x-\omega)$ if jedes einzelne (Stied burd) $x-\omega$ theilbar.
 Der Form Des Frobucta von $x-\omega$ mit einem quabratiføen foctor Daritellen Läß̄t, umb da diefes Froduct aud Dadurdy Den Werty Sutl ergalten fant, DaB Diefer quabratijde Factor gleidy Null gejebt wird, Die
 jo folgt, Daß jebe ©fleidung 3. Sfrades brei Wurzeln befigt. Mit Dent $\mathfrak{B o r f t e g e n d e n ~ i f t ~ z u g l e i d) ~ D e r ~ W e g ~ g e z e i g t , ~ a u f ~ D e m ~ m a n ~ a l f g e m e i n ~ d i e ~}$ Beiden übrigen Wurzeln nad. Beftimmung Der erften mittels Der (Garbanifdjen Formel finden fann.

So ergiebt fidx zunädit für Dic (B)Teidyung $x^{3}-1=0$ aus̉ $x^{3}-1=(x-1) \cdot\left(x^{2}+x+1\right)$ Die Gileidung $x^{2}+x+1=0$, unt man ergält Giernad für x Die brei Werthe:

$$
x_{1}=1, x_{2}=\frac{-1+\sqrt{-3}}{2}, x_{3}=\frac{-1-\sqrt{-3}}{2}
$$

Die 2ufgabe, Die (bleidung $x^{3}-1=0$ auflöen, heiǵt niduts anderes, als Den Werth Der Cubitmurzel aus 1 beftimment, und mant feht aus Dem Worftehenden, Daj Diefe (Subifmurgel breibeutig ift, indent fie neben ifrem getoühnlidjen (arithmetifden) Werthe 1 nodi zmei imaginäre Werthe befigt. Wian überzeugt fidid umgefefrt leid)t Durd) Fotenziren Diefer Werthe von x_{2} und x_{3}, dáß Die britten Fotengen berjelfen gleid) 1 find.

Die (bleidung $x^{3}-a=0$ fübut in gleider Weife auf ben Satz,
 Der gewöhnlide arithmetijde Werth derjelben verftanden wird, Die beiben anderen Werthe Durd Maltiplication Des eriteren mit Den obigen bon x_{2} und x_{3} erfalten werden. Seşt man ser Rürze halber

$$
\frac{-1-i \sqrt{3}}{2}=J_{1}, \frac{-1+i \sqrt{3}}{2}=J_{2}
$$

To find aljo die brei Werthe der ©ubitwurgel aus $a, \sqrt[3]{a}, J_{1} \sqrt[3]{a}, J_{2} \sqrt[3]{a}$.
§iernad raft fidy mun die Beftimmung ber brei Warzefn einer, rebucirten cubifden (fleidung fürzer fafien, Da man nur nöthig hat; in Der Earbaniiden Formel Die breifadjen Werthe Der beiben Eubitworzeln y, z zu beadten, Deren arithmetiidje Werthe wir Der Rürge Galber mit u und o bejeidnen wollen. Da aber, Der obigen Entwiffelung zuforge, Das Product $y z$ Den reellen Werth $-\frac{1}{3} p$ haben muछ, io ergiebt fid) Yeid. Dás mur Die brei Sujammenftellungen

$$
u+v, J_{1} u+J_{2} v, J_{2} u+J_{1} v
$$

braudbar find, welde jomit bie brei Wurzefn ber cubijajen Chreidyung angeben.

Dißcuifion: Sit $\frac{1}{27} p^{3}+\frac{1}{4} q^{2}$ poitio, jo find u und v reell; mant ergalt Daker in Diejem Jall burdy bie Carbanijale Formel eine reelle und zwei imaginare Whuzeln ber (jileidung. Sit $\frac{1}{27} p^{3}+\frac{1}{4} q^{3}=0$, aljo p negatio und $-4 p^{3}=27 q^{2}$, io wird $u=v=\sqrt[3]{-\frac{1}{2} q}$, und man erbalt brei reelle Wirseln, bon denen aber zwei cinander gleid, find,
 Gat. Sil enolid $\frac{1}{27} p^{3}+\frac{1}{4} q^{2}$ negatio, aljo p negativ und $4 p^{3}>27 q^{2}$, io werben u und v imaginär, und mant erfält bie brei $\$$ Surzeln ber
 Die Formt berjelben imaginar, Dagegen Die Werthe in Diejem Fall für alle brei Wurzeln reell find. Der Beweis diejes Sakeß, jowie eine Methode, Dieje reelfen Werthe \}u bered)nen, findet fid in Der Irigono= metrie (2nbbang 3, VII). Da Diefe Werthe aber nidt Durd) alge braijde Formeln gejubden werben tömen, to wird biejer Fall der irrebucibele genamnt.
 $\omega_{1}, \omega_{2}, \omega_{3}$ Gat, braudjt mar mur bas Frobuct $\left(x-\omega_{1}\right)\left(x-\omega_{2}\right)\left(x-\omega_{3}\right)$

gebene ©fleidung britten Grabes, wenn ifre Drei Wurzeln befannt find, in Diefer Form fafreiben, wie leidyt Daraus folgt, Dā Das Folynom Derfenben burd jeben ber brei Jactoren theifbar fein muß, uind außer= Dem fein weiterer, x enthaltender Jactor vorfommen fann. Durd Eint= widelung deş obigen Broducts und Bergleidung mit $x^{3}+a x^{2}+b x+c$ erbält man
$-a=x_{1}+x_{2}+x_{3} ;+b=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} ;-c=x_{1} x_{2} x_{3}$. Für bie reducirte (Sleidung ift alio bie Summe ber brei Wurgetn gleid) Suth, oder $x_{3}=-\left(x_{1}+x_{2}\right)$.

Sit in einer cubiiden (fleiduung das letgte ©flied gleid Sull, hat biejelbe alfo die form $x^{3}+a x^{2}+b x=0$, io ift bie eime शsurzel
 quabratifden (s) eidung $x^{2}+a x+b=0$. Jit aud $b=0$, io find zwei Wurzeln ber ©fleidung gleid Null, und bie britte ift gleid - a.

5eis \$ 95. Barbey XXXVIII.

タntang 5. Das Mnjetzen ber (sleidungen.

Die Mnwenbung Der ßeftimmungşgleidungen zum $\mathfrak{A u f l e ̈ j e n ~ v o n ~}$ Redjuungaafgaben erforDert in Der Regel borerft Die Bildung Der nöthi= gen (Steidungen aus ben in Worten auşgebrïaften Bedingumgen Der $\mathfrak{A} \mathfrak{f}=$
 $\mathfrak{l i d j e n}$ eine $\mathfrak{H e b e r j e b u n g ~ D e r ~ i n ~ D e r ~} \mathfrak{A l}$ fgabe angegebenen Beziefyungen zwiij¢en gejudten (unbefannten) umo gegebenen ©irößen in Die Formel= fprade Der \mathfrak{A} rithmetif, und es ift Daher zum Selingen Der Mrbeit bor allem nöthig, Daß man fidy jene Begiehungen, weldje in mehr ober minder complicirter Fafiung gegeben fein tommen, völlig tlar madje. Man gebe
 als $\mathfrak{U n b e f a n n t e} x(y, z, \ldots)$ gefudit werden joll, unt auf weldje Einbeit (Benennung) jede $\mathfrak{u n b e l} a n+t$ bezogen wirb. Dann jude man biejenigen
 ber in Der $\mathfrak{H} u f g a b e$ angegebenen Sperationen aus, indem man dabei x mie eine befannte Babl bebandelt, und bilde aus ihnen bie (Sleidung. §m folgenden jollen einige reidtere und in Der Fraxiz bejonders ridftige $\mathfrak{2 l r t e n}$ von $\mathfrak{A l f g a b e n ~ n o d i) ~ e t w a s ~ n a ̈ b e r ~ b e i p r o d j e n ~ w e r b e n . ~}$

1. Brocent= Redunngen. Sit cin Capital K zu p ßrocent auf Binjen ausgefieken, to empfängt Der Darleiber für jebe 100 Einbeiten (Thater, Mart it. Dgl.), welde in Dem (Eapital enthalten find, in einem beitimmten Beitraume, $3 . \mathfrak{B}$. in iebem Jahre, p foldie (Finkeiten won bem
 $\frac{K \cdot p}{100}$, und bas uriprünglidje Capital mäditt Durw Dieferben am Enbe bes Sabreş auf $C_{1}=K+z=K\left(1+\frac{p}{100}\right)$ an. Die Sinjen von n Sabren find $z_{n}=\frac{K \cdot p \cdot n}{100}$, und bas umt Dieferben bermebrte Eapital ift
$C_{n}=K+z_{n}=K \cdot\left(1+\frac{p \cdot n}{100}\right)$. Dieie Gleidungen, weldie bie
 angeben (,,Weziehungggleiduungen"), tönnen alる Beftimmungggleiduungen für jebe eingelne berjelben Dienen, fojern Die ïbrigen, zur Beftimmung nöthigent Gröben gegeben find. Man yat zu Diefem 3weete nur die gefuadte Größe
 z^{3} पढ̈jen.

Man beredgne biernad 3 . \mathfrak{F}.

1) K auş z und p, ober aus̉ z_{n}, n, p, ober aus C_{1} und p, ober ลแืื C_{n}, p und n.
2) p auş K und z, ober aus K, z_{n}, n, ober C_{1}, K, ober C_{n}, K, n.
3) n айรื z_{n}, K, p, ober ๙uß̧ C_{n}, K, p.

In Diefen Gleeidungen fann n fowogl cine gange, alz eine gebrodene

 $\mathfrak{H r t}$, iobald bei Diefen eine nadd Frocenten Derfelfen zu beredfnende © Gräße vortommt. Die đrfllarung Der ظierbei vorfommenden ßegriffe $\Re a b a t t$, Dißconto, Tara, $\mathfrak{B r u t t o}$ und Retto, Främie, u. f. wo. fam Dent münoliden $\mathfrak{U n t e r r i d a t ~ u ̈ b e r l a f f e n ~ G l e i b e r . ~}$
 Durd veridiedene Baflenverthe ber vorfommenden Grö̈ß̈en unterideiben,

 eine uno Diefelfe 9trbeit, nur mit veridiedenen Saflenwerthen aubseführt Hat. Statt einer folden efferen Wsiebergolung fann man die Mufgabe ein für allemal löjen, indem man fatt ber beftimmten Bablen allgenteine 3affzeidien anwendet, für bie man bann in jebem eingelnen ₹all nur bie betreffenden \mathfrak{W} Serthe im \Re Refultat einzufeken braudit. So ergieht fíd in Dent angefiürten ©eiippiel aus der allgemeinen Gleifung

$$
z=\frac{x}{100} \cdot p \text { Das } \Re \text { Rejultat } x=\frac{100 z}{p}
$$

 Binfen Durá Die 2tnzaft Der Frocente" auß̄preeden. - Diefe Bemertung gilt natürlid, nidt bloß für Frocentred.dnungent, fonbern allgemein.

Die borftebenben $\mathfrak{B e z}$ ieffugggleidungen wiro man aud bei zufam= mengeiegkteren Procentredfrungen antoenben tönnen.
©ollen 3. B. zwei ©apitafien gefumben werben, beren ©umme greidy a gegeber ift, wenn bas erfit zu p, bas zweite $34 q$ §rocent aubgeliefen war, uno bas zweite
 bie 2nnabil ber Mart bes erfter annebmen, bas zweite gleidid $a-x$ unb bie Dififerenz ber 3 inifen bes zıveiten unb erfiten greeid b feeker. Man erfăalt bann naḑ ben Borigen

$$
\frac{a-x}{100} \cdot q-\frac{x}{100} \cdot p=b
$$

Anmerfung：Bei ber $\mathfrak{B e f t i m m u n g ~ b e s ~ b a a r e n ~ W e r t h e s ~ c i n e s ~ E a p i t a l s ~} C_{r}$
 genmärtig zu zablenbe Eapital K fo beftimmen，ba巨 es burd feine njährigen Sin＝

 conto）ftatt bon bent wirflidi gezahiten（Gapitar K von bem zu zaflenben C gerefunet， alfo $K=C-\frac{C p n}{100}=c\left(1-\frac{p n}{100}\right)$ gefegt．Theoretifid if bies fali（ia．Simmt man子．B．$n=1, p=5$ ant，fo bettägt ber febfler für jebe 420 Thater bes Capitals einen $\mathfrak{T h a l e r}$ ．Ein abhlidider Fall finbet ftatt bei fogen．Terminalzahfungen．

 enffleft bie frage，nadif wiebiel 马eiträumen bies geideben fönne，fo baß weber bem

$$
\frac{K_{1}}{100+p a}+\frac{K_{2}}{100+p b}+\frac{K_{3}}{100+p c}+\cdots=\frac{K_{1}+K_{2}+K_{3}+\cdots}{100+p n}
$$

fein，während getwölnlidd nadi）ber，ftreng genommen，untidtigen ©leidung

$$
\begin{aligned}
& \frac{K_{1} \cdot p \cdot a}{100}+\frac{K_{2} \cdot p \cdot b}{100}+\frac{K_{3} \cdot p \cdot c}{100}+\cdots=\frac{\left(K_{1}+K_{2}+K_{3} \cdots\right) p n}{100} \\
& \quad \text { ober } K_{1} \cdot a+K_{2} \cdot b+K_{3} \cdot c+\cdots=\left(K_{1}+K_{2}+K_{3}+\cdots\right) n
\end{aligned}
$$

 jeber cingetmen ber in ifnen bortomnenben ©fröben aus ben übrigen benubt werben．

5eis 63，গir．34－50，56－58，70，109－117，178－187．ßarbet XXIII， 1．St．94－100，111，2．ভt．61－68，79－87，3．St．1，10－22．

2．Bertheilung $=$ Rednung．Soll cine ©röge a unter mefrere Ferionen A, B, C, \ldots To vertheift werben，Daß B ben Betrag b^{\prime}, C Den Betrag c^{\prime}, u．f．wo．mefir alz A erfalte，io hat man，wemn x ben \mathfrak{Y} n＝ theil Deß A bezeidynet，$x+\left(x+b^{\prime}\right)+\left(x+c^{\prime}\right) \not-\cdots=a$ ，ober $n . x+b^{\prime}+c^{\prime}+\cdots=a$ ．Soll a Dagegen in einem gegebenen $\mathfrak{B e r}=$ Gältnī $m: n: p$ u．f．w．vertheilt werden，io fann man Durch x Den auf Die Berbaltnibzahl 1 fommenden 2antheil bezeidnnen，io Daß $m x, n x, p x$ bezüglide Die $2 \mathfrak{A}$ ntheile vont A, B, C find，und Die ©STeidyung

$$
(m+n+p+\cdots) x=a
$$

beitegt．Soll jeder Theil augerbem nod einen beftimmten Betrag a^{\prime}, b^{\prime} ， c^{\prime} u．f．w．von ber gegebenen（Erröbe erbalten，fo ift

$$
(m+n+p+\cdots) x+a^{\prime}+b^{\prime}+c^{\prime}+\cdots=a
$$

und bie gefudten Größen find bezüglidi $m x+a^{\prime}, n x+b^{\prime}$, u．f．w．， mobei $a^{\prime}, b^{\prime}, \cdots$ aud negativ fein fïmen．
§5eis： $21-24,28-32,52-54,79,86,92,188-196$ ．Barbey 1．St．70－93， 132－146；2．©t．124－134；3．St．44－49．

ie einer (Eintseit von veriăjedenen Sorten einer Waare, und μ Der Freis einer (Fintheit Der bural Mijaung bon bezüglid) a, b, c u. ₹. w. (Fin= Geiten jener Sorte entitebenden Mijajorte, to ift, wenn feine andere $\mathfrak{B e}=$
 gleidg der Summe ber ßreife ifrer Bejtandtheile, und man bat alio bie (F) Keidung

$$
a \alpha+b \beta+c \gamma+\cdots=(a+b+c+\cdots) \mu
$$

mittelit weldjer fíd jebe cinzelne der Größ̈en $a, b, c, \ldots \alpha, \beta, \gamma \ldots, \mu$ als $\mathfrak{U n b e f f a n n t e ~ a u s ~ b e n ~ u ̈ b r i g e n ~ b e r e d n e n ~ l a ̈ ß ̆ t . ~ W e r d e n ~ b l o s ~ z w e i ~ S o r t e n ~}$ gemiiddt, fo tann gefragt merben, wieviel bon jeder zu nefmen fei, damit ein beftimmter Betrag s Der Mifidiorte von gegebenem Wreife erbalten merbe. §ier find alfo a und b bie $\mathfrak{H n b e f a n n t e n , ~ u n d ~ e s ~ i f t ~} a+b=s$, $a \alpha+b \beta=s \mu, \mathfrak{u}$. ј. m.

நeis: 207-222. Barbely: 1. St. 147-154; 2. ©t. 109-123; 3. ©t. 23-35.
 beftiment werDen, wenn eine Rette bon verbindenden ßerbältniffien

$$
a: c=m: n, c: d=0: p, d: e=q: r, \ldots f f: b=s: t
$$

gegeben ift, to hat man
$c=\frac{n}{m} a, d=\frac{p \cdot c}{o}=\frac{p}{o} \cdot \frac{n}{m} a, e=\frac{d r}{q}=\frac{p}{o} \cdot \frac{n}{m} \cdot \frac{r}{q} a$, и.i.m., вiқ $b=\frac{t \cdot f}{s}=\frac{p n r \ldots t}{o m q \ldots s} a$, aljo $a: b=o m q \ldots s: p n r \ldots t$.
$\mathfrak{B r g l}$. $\mathfrak{A n t j a n g}$ 1. গr. 8.
 wegung innerfarb ber Beit t Den Raunt s zuriuf, und bezeidnet c jeine (Seid)windigfeit, D. G. Den in Der Beiteinheit Durd) (aufenen Weg, to ift

$$
s=c t, \text { oder } c=\frac{s}{t}, \text { oder } t=\frac{s}{c}
$$

Sollen fid) z. B. zwei Ω örper hinter cinander kewegen, und zwar Der eine mit Der (Seidmindigfeit c, Der andere mit Der (Sejdmindigteit c_{1} und von cinem um a (Meter) zuriüfigelegenen Drte aus, io ift für Den Drt, an weldem der letstere Pörper Den erjferen einhult, Der Weg Des̉ leģteren gleid Dem Des erjteren plus a, aljo $c_{1} t=c t+a$. Wirio nun z. B. t gejudt, to hat mant $c_{1} x-c x=a, x=\frac{a}{c_{1}-c}$. Diefea allgemeine \Re fultat möge zugleid als Beipiel für die Discuifion eine foldjen bienen: Sit $c_{1}>c$, io iit x pofitiv, und nur in Diejem Foll ift Die 2 fufgabe in engerem Sinm beredtigt. Four $c_{1}=c$ ergillt man $x=\infty$, D. 5. Der zweite Rörper Golt Dent erften nie cin; für $c_{1}<c$ wirb x negativ, und Diejes̉ Rejultat fagt, Dā̄ beibe Rörper x Beiteintreiten vor Dem gedaditen Mafang ber Bewegung an Demielben Drte gewefer mären, wem Diefer \mathfrak{A} nfang entipredjend zurüdfigelegt toürde.

5eiz: 120-162. Barbety 2. St. 89-108, 136; 3. ©t. 50-58, 99-108.

9itbang 6. Heberbeftimmte und unbeftimme \{ufgaben.
Sind zwifden $n \mathfrak{l n b e f a n n t e n ~} \mathfrak{m e b r}$ ata n won einander unabbängige Breidungen gegeben, io fann man von benfelben beliebige n (bleidungert
 gejumbenen Wiserthe formen mun in bie bisher nidut benubten (Sleidungen ftatt Der Betreffenden $\mathfrak{H z b e f a n n t e n}$ cingejegt werDen. Werben bierburd Diefe Yeछsteren (Sleidungen zu identijden, io ift Die 24 fgabe löabar, uno Diefe (Sleid)ungen waren einfad überfiuffig; wird Dagegen Denjelben Durd Die eingefetsten Werthe nidjt genügt, io ift bie शlufgabe nidit losbar.
§n practididen $\mathfrak{F a f f e n}$ fönten jedod Derartige überzäblige (fleidjungen von Werth fein, zunädjt wemn Die einzelnen Sfleidungen mehrfacje Wur= zeln geitatten und Die $\mathfrak{A} \mathfrak{H}_{z}$ ahl Derjelben Durdi Die überzähligen beidurält wird. So erbält man z. B. aus den beiben (®ileidungen $(x+y)^{2}-2 x=49$; $3 x^{2}+4(x+y)^{2}=372\left(\mathbb{S} 36\right.$, Beifp. 5) Die Rejultate $x_{1}=+4$, $y_{1}=+5 ; x_{2}=+4, y_{2}=-13 ; x_{3}=-4, y_{3}=+13 ; x_{4}=-4$, $y_{4}=-5$. §it num noch Die überzäflige (ङleid)ung $x^{2}+y^{2}-2 x y=$ $5 x-4 y+1$ gegeben, io fefht mant, Dag Diejer legteren Durd Die Werthe $x=4, y=5$ ebentalla gentugt sirid, während bie übrigen Werthe für Diejelbe nidyt braudibar find.

Saat man ferner überzählige (Gleidungen, bon Denen im Borauæ be= Eannt ift, Dā Die WBerthe ber Unbefannten ibnen genügen muifien, fo fann
 nuţen. Sind z. B. Die brei-Wintel α, β, γ eine $\mathfrak{D r e i e c t s ~ g e m e f i e n ~ o d e r ~}$ Gereduct, io Dient Die Gileidung $\alpha+\beta+\gamma=180^{\circ}$, Deren (Sültigfeit im Boraus feifiteht, zu einer folden Brobe.

Enolid tonnen foldje überzählige ©犬leidungen bazu bienen, die unber= meioliden fleinen Ungenauigteiten, weldue bei Mefiungen und Beobadi)= turgen bie ftete Folge ber mangelnden Bolffommenbeit Der Sinne oder ber Meß̄inftrumente find, ausugleidjer. Das 刃ảbere bierüber lefrt ein Theil Der angewandten Mathematif, Die fogenannte Muझgleidjungפ̆rec̆unung.

Sind bagegen weniger (Steidungen alz Unbefante vorkanden, io fann man to viel beliebig auşgewäflen der reb̧teren, als Sfleidungen fehlen, ganz beliebige Weerthe beilegen und jodann Die zugehörigen Werthe Der übrigen 1 nbefannten Durd) 2luflbien Der (Sleidungen beftimmen. Der=
 gen utid heizen befbalb unbeftimmte.

In vielen Fälen find jebod Mierbei anderweitige $\mathfrak{B e d i n g u n g e n ~ f u ̈ r ~}$ Die unbefiannten (Srögen gegeben, weldje fid) nid) in form von ©ileidun=
 Firenzen einid)ließen, voer jelbjt bie 2lugabe zu ciner büllig beitimmten madfen. Die widetigften Gierker geförigen Fälle fino bie, in weldjen bie Bedingung geitellt ift, Dag Die Werthe Der Unbefamnten fämmellidy ganje Bablen ober, bei quabratifiden (ileidungen, Dā̄ fie rationale Bablen fein follen. In biejen Fallen heipt bie $\mathfrak{A l f g a b e}$ eine Diophantijac.*)
 ben，in welder x umb y ganze Saflen jein follen und a, b, c ebenfalla ganze Bablen feien．Man fom vorausjeben，Dā́ a, b, c feinen gemein＝ fafaftiden Theiler haben，da man anderen Fallz alle Bliteder Der Bilei＝ dung Durdi Diejen Theiler Dividiren fann．In biejem Foall müfien a und b aud unter fide relative Wrimzahlen jein．Denn bäten beibe Baklen einen gemeinidaftlidien Factor k ，wäre aljo $a=k \cdot \alpha, b=k \cdot \beta$ ，fo wäre $a x+b y=k(\alpha x+\beta y)=c$ ，aljo müß̄te， $\mathfrak{b} \mathfrak{a} x$ und y ，und mitgin aud $\alpha x+\beta y$ ganze Sahlen find，aud c ben factor k baben．

Sino nun a, b relative Brimzaklen，jo löje man bie ©fleidung $a x+b y=c$ zunädjit auf Diejenige Unbefannte $\mathfrak{a u f}$ ，weldede Den fleinerent Goefficienten hat，indem man bie andere lunbefante wie eime befannte （Sröge befjandelt．Erbält man z．B．$y=\frac{c-a x}{b}$ ，fo fonbere man burd） Divifion mit b in c und in a joviel ganze Einkeiten alz möglid aus bem
 Babl h ．Dann ift $x=\frac{c^{\prime}-b h}{a^{\prime}}$, und ba jebenfalla $b>a^{\prime}$ fein muñ， 10 fant man bier wieder bie ganzen Bielfadjen won a^{\prime} abjondern und Den Reft $\frac{c^{\prime \prime}-b^{\prime \prime} h}{a^{\prime}}$ gleid einer ganzen $\mathfrak{Z a h l} h^{\prime}$ jeţen．Damn ītwieder $h=\frac{c^{\prime \prime}-a^{\prime} h^{\prime}}{b^{\prime}}$ ．
 $h_{n}-1=\gamma-\alpha \cdot h_{n}$ fommt，in weldem Der 刃ienner gleid） 1 geworben ift，ein Fall，welder immer eintreten mū̃，Da Die 刃enter $b, a^{\prime}, b^{\prime}$ u．i．w． eine Feihe beftändig abnebmender ganzer Bablen bilden．Dann find für jeden ganzen Werth n bon h_{n} aud h_{n-1} und Daher aud h_{n-2}, u．f．w． biz ¡ø゙ließlidy x unt y ganze Baklen．Subjtituirt man den für h_{n-1} ge＝
 für h_{n-2} ，Den fo für h_{n-2} gefunvenen \mathfrak{A} usbruat in Die（fleiduung für
 n auほbrücten und für jeben beliebigen ganzen Werth bon n ein ber gege＝ benen ©leiduung genügendes Paar ganzer Werthe bon x und y ergeben．

$$
\begin{aligned}
& \text { Beifpiel: } 17 x=11 y+86 ; y=17 x-86=x-7+\frac{6 x-9}{11} ; \\
& \frac{6 x-9}{11}=h, x=\frac{11 h+9}{6}=h+1+\frac{5 h+3}{6} ; \frac{5 h+3}{6}=h^{\prime}, h=\frac{6 h^{\prime}-3}{5}= \\
& h^{\prime}+\frac{h^{\prime}-3}{5} ; \frac{h^{\prime}-3}{5}=h^{\prime \prime}, h^{\prime}=5 h^{\prime \prime}+3 . \\
& h=\frac{6 \cdot\left(5 h^{\prime \prime}+3\right)-3}{5}=6 h^{\prime \prime}+3 ; x=\frac{11 \cdot\left(6 h^{\prime \prime}+3\right)+9}{6}=11 h^{\prime \prime}+7 ; \\
& y=\frac{17\left(11 h^{\prime \prime}+7\right)-86}{11}=17 h^{\prime \prime}+3 .
\end{aligned}
$$

§̂uir $h^{\prime \prime}=0$ erbält man $x=7, y=3$ ；für $h^{\prime \prime}=1, x=18, y=20$ ， fïr $h^{\prime \prime}=2$ erfält man $x=29, y=37$ ，für $h^{\prime \prime}=-1, x=-4, y=-14$
u．¡．w．

Sind affgenein $n-1$ (Sleidungen für n Itrbetannte gegeben, io bilde man zunaidjit Durd) Elimination eine (Sleidung mit zwei lnbefant= tent x, y und verfahre mit diefer, wie vorber angegeben. (Durd Suffitu: tion Der erfaltenen $\mathfrak{A l u}$ brüufe bilbet man jodann eine (Sileidung zwifd)ent Der (Gröbe h_{n} und einer Dritten Unbefament z, weld)e in Beziebung auf die ©rößen h_{n} uno z wieder wie borber bebandelt wirb. Sndem man it Diejer WSeife fortfährt, gelangt man idjlieflid) zu gormeln für fämmtlidje unbefannte Größen.

Feeblen p (Sleidungen, fino alio $n-p$ (S) (eid)ungen für $n \mathfrak{H n b e t a n n t e}$ gegeben, io fann man für $p-1$ beliebig aubెgerwähtt unbefannte (9 rögen beliebige gange Werthe jeßen und Dann für jede eingelne joldje \mathfrak{A} (nuthme Die $n-p$ (Sleidungen in Beziefung auf bie nod uibrigen $n-p+1$ Hnbetannten, wie vorker angegeben, behandeln.

Sit außer ber Bedingung, Daß Die Werthe ber Unbefannten ganje Bablen jeien, nodi die weitere geftellt, Dā́ Dieferben pojitiv fein jolfen,
 nod engere (Strenzen eingefaränft, indem man bant nur foldfe ganze Werthe für h_{n} annefgmen Darf, weldje für Die Unbefannten pofitive Wertbe liefern.
 Sarbey XXXI.

2nfang 7. Exponentialgleidungen.
Bon Den jogenannten transicendenten ©heidungen geitatten foldje, in weldjen x nur als Exponent oder als Beftanotheil eine Exponenten einer befannten Bajiz vortommt, zumeilen eine einfodje $\mathfrak{Z u f l a j}$ ung mit Suilfe Der Sogaritgmentafern, indem man zunädit Die Logarithmen beiber Seiten Der (Sileidung entwifelt und cinander gleid jeft. Wird Gierdurd) Die (Si) Dent früheren \Re Regeln beffandelt werben.

Beippiel: 2 (us $a^{2 x+3}=b^{5}-7 x$ folgt:
$(2 x+3) \cdot \log a=(5-7 x) \cdot \log b ; x=\frac{5 \log b-3 \log a}{2 \log a+7 \log b}$
§eis $\$ 61, \mathfrak{i r} .126$ u. w., Barbel) XXII.

IV. $\mathfrak{A b j}$ anitt: $\mathfrak{A n f a n g g a g r i m b e ~ b e r ~ f o ̈ t e r e n ~} \mathfrak{A x}$ (rithmetif.

VIII. ©apitel.

§ 37.

 Die eingelnen ©̛rögen, aus Denen die Feike bejteft, heigen ifre (Slieder.

Wir behandeln im folgenden nur zwei Meiben von bejonder ein= fadjer $\mathfrak{A r t}$, bie fogenannten aritgmetididen und bie geometrifden.

§ 38.

Gine arithmetijupe Reige ift eine foldje, bei weldyer jebes folgende Blied aus dem ibm vorbergebenden Durd Modition einer und Derjefben 3ahl entiteht, bei welder aljo Die $\mathfrak{D i f f e r e n z}$ ie zweier auf cinander folgent: Den ©flieder einen comftanten Werth Kat. Diefe Differenz heißt Die $\mathfrak{D i f =}$ ferenz der Ћeihe; Das̉ erfte Grlied Geiß̈t Gier, wie bei jeder そeihe, Das

$$
a, a+d, a+2 d, a+3 d, \text { и. }
$$

 tereê, Daß̃ allgemein Das $n^{\text {te }}$ (Blied a_{n} burd, die formel

$$
\begin{equation*}
a_{n}=a+(n-1) d \tag{1}
\end{equation*}
$$

gefunden mird. Gine Derartige Formel für Daß $n^{\text {te }}$ ©flied einer Reibe, weldue Die Bereduntg jedes beliebigen ©fliedes Derfetben ohne Die Remut= niß der vorbergebenden geftattet, heigt das alfgemeine ©lied derjelben. Unter bem ©ummenglied einer Жeibe verfeht man eine formel für die Summe S_{n} ber n erftell ©fieder, weldje die Beredanutg oiefer Sumute olyne Die Remntnín Der WBerthe Der cingelnen ©ilieder geitattet. Stur die aritymetijde Reilye findet man biejes Summenglied auf folgende Weife: (E) z ift

$$
\begin{align*}
& \text { und } S_{n}=[a+(n-1) d]+[a+(n-2) d]+[a+(n-3) d]+\ldots+a, \\
& \text { baher } 2 S_{n}=[2 a+(n-1) d]+[2 a+(n-1) d]+[2 a+(n-1 d] \\
& +\ldots+[2 a+(n-1) d]=[2 a+(n-1) d] \cdot n, \text { alfo } \\
& \text { (2) } \quad S_{n}=\frac{[2 a+(n-1) d] n}{2} \text {, ober aud) } \tag{2}\\
& \text { (3) } \quad S_{n}=\frac{a+a_{n}}{2} \cdot n .
\end{align*}
$$

Die Formeln (1) - (3) geftatten überbaupt Die Berechnung Der Werthe jeber beliebigen zwei bon Den 5 (Sirößen a, n, d, a_{n}, S_{n} aus ben orei übrigen. Man ftelle die fiid hieraus ergebenden 10 einzefnen $941=$ gaben zuammen und gebe ibre 2 fufbiungen an.

Beifpiele: ફ̧cis \$81, 82. Barben XXXII A.
Die Differenz d einer arithmetifden Feike fant forookl poition, ats negatio jein, D. h. jedes folgende (Slied fann aud) aus bem vorkergehenden Durd) Subtraction einer conftanten (5rö̈be entifegen. In Diefem leb̧teren Jalle ift jedes forgende ©fited fleiner als das borbergehende, während bei pofitivem d jedes folgende größ̄er alz baß vorkergehende ijt. (Eine jede Reibe, Deren Glieder an Sriöße beitändig zurebmen, heipt eine fteigende, jede Reibe, Deren Sliedor beftändig abnebmen, eine fallende.

תann es auti Reilyen geben, bic weder fteigent nod faltend finb? Iit bies bei arittymatifuen ケeiben möglid?

§ 39.

Gine geometrifde Reibe itt eine foldje, bei weldjer jedes folgende Bried aus bem vorbergebenden Durd MAultiplication Deffelben mit einer und Derietben 3 abll entiteft, in weldjer alfo der Ω uotient je zweier auf einamber folgender Sfieder demjelben Werth hat. Sit q Diejer ®uotient der Reike, a Das Afnjangsglied, io ift die Reihe:

$$
a, a q, a q^{2}, a q^{3}, a q^{4} \text { u. ¡. w., }
$$

und man findet ofne Weiteres für das allgenteine (Gilied

$$
\begin{equation*}
a_{n}=a \cdot q^{n-1} \tag{4}
\end{equation*}
$$

Ơür bas Summenglied hat man:

$$
\begin{align*}
& \qquad S_{n}=a+a q+a q^{2}+a q^{3}+\ldots+a q^{n-1} \\
& q \cdot S_{n}=a q^{2}+a q^{3}+\ldots+a q^{n-1^{\prime}}+a q^{n}, \\
& -a q^{n}, \\
& \text { alio } S_{n}(1-q)=a \\
& \text { Demmad) }
\end{aligned} \quad \begin{aligned}
& \text { (5) } \quad S_{n}=\frac{a\left(1-q^{n}\right)}{1-q}, \text { oder (6) } S_{n}=\frac{a\left(q^{n}-1\right)}{q-1} . \tag{5}
\end{align*}
$$

Man löje wieber Die $\mathfrak{A u f g a b e , ~ a u ß ~ z w e i ~ D e r ~} 5$ ©jröß̄en a, q, n, a_{n}, S_{n} bie übrigen zu beredifnen, für jeben ber 10 einzelnen $\mathfrak{F a ̈ l l l e}$.
$\mathfrak{A n m e r f u n g}$: Die $\mathfrak{Z u f g a b e n t} q$ und a_{n} aus S_{n}, a und n, forvie q und a aut a_{n}, S_{n} und n zu beftimmen, fübren auf ©leidungen vom nten Grabe.

Eine geometrijdje Reibe ift fteigend, wenn $q>1$, fallend, wenn $q<1$ ift. Was erbält man für $q=1$?
 werDen, und in diejem Falle heigt die Æeibe eine unendlide. Fiur eine un= enolide geometrijde 丹eihe erbält man aus (5) Die Summe $S=a \cdot \frac{1-q^{\infty}}{1-q}$. 3it $q>1$, io ift q^{∞} und jomit audd S unenolide groé, iff aber $q<1$, io wird q^{∞} unendlid flein, Daher $1-q^{\infty}=1$, und

$$
\begin{equation*}
S=\frac{a}{1-q} \tag{6}
\end{equation*}
$$

(Eine jede unendlide Жeige, Deren Summe gleidmoblt einent ent= liden Werth Gat, Keißt convergent, eine untendidje Meibe, Deren Summe unendlid groß ift, beißt Divergent. (Eine geometrijaje Reibe Divergirt, wenn fie feegent ift, fie convergirt, wemt fie eine fallende ift.
\mathscr{A} merfung: ©teigenbe ॠeiben fönnen nie conbergiren. Fine fallenbe Reibe faut bivergiren, wie z. B. bie Reibe: $1 \frac{1}{2}, 1 \frac{1}{4}, 1 \frac{1}{8}, 1 \frac{1}{16} \ldots$. Damit eine \Re eibe con= vergiren fönte, muß fie in ber 2 (rt fallen, bā́ ibre ©fieber, bon irgend einem
 fann fie gleiduobyl eine bivergente fein, uno es bebarf baher bie frage nadif ber Eonvergent ober Divergent aud in biefem galle einer bejonberen Unterfudung.
 ben. - תann eine unenolide aritgmetifide æeibe convergiren?

Aufgaben: 1) Man fübre ungefebrt bie Divifionen $\frac{1-q^{2}}{1-q}, \frac{1-q^{3}}{1-q}$,
 und a. 4) Stelle bie periodifijen Decimatbrïd)e $0,333 \ldots, 0,545454 \ldots$ in Formt geometrijajer Æeiben bar und beredute ibre Summen. Weldje ßegel ergiebt fidit baraus für bie Berwandlung periobifajer Decimalbrïdje in genteine Brüde?
§eis § 83, 84, Nr. 1-13. Barbey XXXIII.

*§ 40. Snterpalation ier Meigen.

EFine \Re eige interpoliren, Geiğt zwijdjen je zwei ©flieber Derjelfent eine beitimmte $\mathfrak{A l n} \mathfrak{j a h l}$ neuer ©flieder emidjalten, fo Daf Die hierburd entitehende Reibe demjelben Sejeke folgt, wie Die gegebene.

Sollen zwifden zwei (sfieder a_{k} und a_{k+1} einer aritymetifden Reike p (Silieder cingeidaltet werDen, io entitelyt eine neue aritymetijd)e Reike, beren erfles ఆlied k und Deren $p+2$ tes (Silied a_{k+1} ift. Be= zeid)net man die Differenz Derjelben Durd x, jo ift
$a_{k+1}=a_{k}+(p+1) x$, alfo $x=\frac{a_{k}+1-a_{k}}{p+1}$, oder, wenn sir Die Differenz Der urjprünglidjen Reike burd) d bezeid.tnen, $x=\frac{d}{p+1}$. Die neuen sflieder find aljo

$$
a_{k}+\frac{d}{p+1}, a_{k}+\frac{2 d}{p+1}, a_{k}+\frac{3 d}{p+1}, \ldots a_{k}+\frac{p d}{p+1}
$$

$\mathfrak{A n m e r f u n g}$: Bergleide bie $\mathfrak{I n t e r p o l a t i o n ~ b e i ~ b e n ~ l o g a r i t b m i j f o n ~ u n d ~ t r i g o ~}$ nometriidjen Zafeln.

Sollen zwijden zwei ©fiteder a_{k} und $a_{k}+1$ einer geometrifdjen ॠeibe p (Slieder eingeidaltet werben, und ift x Der Duotient ber neuen geometri= iden Reibe, io ift

$$
a_{k+1}=a_{k} \cdot x^{p+1}, \text { aljo } x=\sqrt[p+1]{a_{k}+1}: a_{k}=\sqrt[p+1]{q}
$$

*§ 41. 2ufgaber.

 berielben zu beredinent. 2) Ebenio ben Suotienten einer geometrijden Reike. 3) Die Summe ber (SIfeber a) einer arithmetijden, fowie b) einer geometrijdjent
 gliede einer beltebigen \Re Reibe ify affgemeines sslied zu finben. 5) Das allgemeine und bas Summenglied einer ঞeibe zu beredinen, weldie burd Meultiplication ber
 entifeber.

Sujammengejekte Sinjen oder Bimjeşinjen trägt ein Capital, wenn Die am Enbe ic eineß Beitraum (eineß Jabreß) falligen (einfadjen) Sinjen
nidat erboben, fondern Dem Capitar zugefügt und mit Demjerben weiterbint verzinft werben.

Sit cin (Sapital K зи p ßrocent jäbritid) auşgelieben, jo betragen bie einfadjen Binjen Deffelben nad ßerlauf Des erften Jabres $\frac{\boldsymbol{K} \cdot \boldsymbol{p}}{100}$, und bas Sapital mädj) burd §inzufügung berfetben auf $C_{1}=K\left(1+\frac{p}{100}\right)$ an. Das capital C_{1} trägt im \&aufe Des zweiten Jahres $\frac{C_{1} \cdot p}{100}$ Sinfen unס mädu) Durdi Diejelben auf $C_{1}\left(1+\frac{p}{100}\right)$ an. 2afgemein erbălt man bas
 wadefene (Eapital vom Ende bes vorkergegangenen Jafres mit $\left(1+\frac{p}{100}\right)$ multiplicirt. Die Ģrögen $C_{1}, C_{2}, C_{3}, \ldots C_{n}$ bilden demmad eine geo= metrijde Reike mit Dem आMjangaggliede $C_{1}=K\left(1+\frac{p}{100}\right)$ und Dem Ouo ienten $1+\frac{p}{100}$. Diefer leb̧tere wirb ber „Binşfuß" genannt und foll imt Jolgenden ber תürze halber mit q bezeidunet werden. ©es ift afio

$$
\begin{equation*}
C_{n}=K \cdot q^{n}, \tag{7}
\end{equation*}
$$

Die sfleidury (7) geftattet überbaupt Die Beredmung jeder ber vier ©röß̄en C_{n}, K, p, n aus den brei übrigen. Man lōje Die fía) bierauß ergebenden $\mathfrak{A x}$ fgaben.

Sind bie 3 injen fatt nadi je einem Jahre nadi einem amberen Seit=
 Beiträume und für p find Die Srocente für einen joldjen Beitraum zu jeछ̧en.

Jit n cine gemifdate $\mathfrak{B a b l}$, 子. B. gleid, $m+\frac{r}{s^{\prime}}$ fo find mur für bie wollen m Jahre bie Binjeşinjen, Dagegen für ben Brudutheil Des Dant folgenden Jahreẻ Die einfadien Binjen von C_{m} zu beredfnen. Daber erbält man in biejem Fall

$$
C_{n}=K q^{m}+K q^{m} \cdot \frac{p}{100} \cdot \frac{r}{s}=K q^{m} \cdot\left(1+\frac{p r}{100 s}\right)
$$

Wird amt Ende jedeş Jahresె (Beitraumis) eine beitimmte ©umme a Dem Capital zugelegt, jo betrigt Der Endwerth Des (Eapitals nady Dem erjten Jabre: $K q+a$, nad bem zweiten:

$$
[K q+a] \cdot q+a=K q^{2}+a q+a
$$

nady bem britten in gleider Weife:

$$
K q^{3}+a q^{2}+a q+a, \text { u. ¡. w. }
$$

am Enbe des n ten Jabreş:

$$
K q^{n}+a q^{n-1}+a q^{n-2}+\cdots+a q+a
$$

Berednet man nadid (5) Die Summe ber auf bas erje ©flied Diejes

$$
C_{n}=K q^{n}+a \cdot \frac{q^{n}-1}{q-1}
$$

Wird daß capital a am Ende jebes̉ Jahreb̉ weggenomment，io erbalt man burde eine abinlide Entwiffelung，oder indem man in Dem Rejultate ber borbergehenden a negatio nimmt，

$$
C_{n}=K \cdot q^{n}-a \cdot \frac{q^{n}-1}{q-1}
$$

Sieraus folgt，Daß Durd jent Sitnoegnabnte Das̉ uriprünglidye Eapital aufgezegrt fein wirb，wemt

$$
K \cdot q^{n}=a \cdot \frac{q^{n}-1}{q-1}
$$

ift，mittelft welduer ©fleidung man jebe ber Srögen K, n, a aus．Dent übrigen beredinten fann．
 jedes Jabres gemadit，io ergiebt find ebemio

$$
C_{n}=K \cdot q^{n} \pm a q \cdot \frac{q^{n}-1}{q-1}
$$

Onwendungen auf そentenred）mmg，そabatt＝und Dibiconto＝ఇed）murg，auf 2（ufgaben für Rebensuerfiderungen，Sparfafien u．bgł．m．Setipiele ईeis̊ \＆84， §r．14－69．Barbey XXXIV．

IX．©apitel．

（1） \mathfrak{a} リ

 § 43.

$$
\begin{equation*}
a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\ldots}}} \tag{1}
\end{equation*}
$$

0．b．cine Berfettung von Brïden，Deren Sähler gleidy 1 find，unter fiab （oder mit einer garzen Bafl a），io Dẩ jeder folgenbe Frudid mit Demt

 fetben fann cime endlidje ober eine unendlide fein（endlide und unendlide， oder rationale und irrationale §ettenbriudje）．

Onnterfung：Jm weiteren Sime beriteft man unter cinem תettenbrud eine Berfettung beliefiger ßriidje，ber $\mathfrak{A r t}$ ，Daß́ jeber forgenbe mit bem 刃enner bes vorbergefenben burd）2bbition ober Subtraction berbunben if．Wir befart＝ befn bier nut bie für bie ofraxis widftigen jogenamten gemeinen Rettenbriude，
 pofitio fint．
 gemeiten $\mathfrak{B r u d}$ verwandeln，indem man bie 2Ybditionen in ber Ћeihenfolge von Der leģten bis zur erjten nadi Der Ћegel $a+\frac{1}{b}=\frac{a b+1}{b}$ ausfübrt unb bazwijden Den Sat $1: \frac{p}{q}=\frac{q}{p}$ bembţt．

Erffärung：Bridyt man cinen（endlidjen ober umenolidjen）Retten＝ brudg bei einem ©ffiede ab，indem man alle folgenden（Stieber unter＝ brüft，und verwandelt Den Gierbei bleibenden Rettenbrud in einen gemei＝
 Rettenbrudぶ．

Sat 2．Die Näherung bbrüde cineş Rettenbrude find abwedifelno fleiner und gröber，ala der Werth beß vollitän＝ Digen 凡ettenbrudeふ．
 fleiner als der volfitandige $\mathfrak{B r u d}$ ，Demn es fefit cin Summand Deffelber． In Dem zmeiten 刃äherung马brud $a+\frac{1}{b}=\frac{a b+1}{b}$ ift Der 刃enter b ओ flein $\left(\right.$ um $\left.c+\frac{1}{d+\ldots}\right)$ ，affo $\frac{1}{b}$ ，uno folglide audid $a+\frac{1}{b}$ zu grob̄；in Dritten $\Re a ̈ h e r u n g b \mathfrak{b r u d})$ ift c zu flein，aljo $\frac{1}{c}$ und Daher aud $b+\frac{1}{c}$ 孔u groz，aljo $\frac{1}{b+\frac{1}{c}}$ und folglid）audi $a+\frac{1}{b+\frac{1}{c}}$ fu flein．

Sak 3．Der Zähler eitte 刃 Räherung̉brude ift gleid Dem Froduct bes 3ähler be nädyborkergekenden Nähe＝ rungsbrudes，mit Dem leßten（Sliede，vermehrt um Den马ähler deふ zweitoorbergehenden 刃äherung brude马．§benio ift Der Renner Des Makerung brudues gleid Dem Froduct aus Dem Nenner Des nädfoorbergehenden Näberungbirude und Dem leßten Sfliede，Dermehrt um Den Menner Des zweit＝ vorkergekenden．

Beweis：© \＆jeien $\frac{z_{1}}{n_{1}}, \frac{z_{2}}{n_{2}}, \frac{z_{3}}{n_{3}}, \ldots \frac{z_{p}}{n_{p}}, \frac{z_{p+1}}{n_{p+1}}, \ldots$. ．Der அeibe
 $\frac{z_{1}}{n_{1}}=\frac{a}{1}, \frac{z_{2}}{n_{2}}=\frac{a b+1}{b}$ ．Man findet nun $\frac{z_{3}}{n_{3}}$ ，wenn man in $\frac{z_{2}}{n_{2}}$

$$
\frac{z_{3}}{n_{3}}=\frac{a \cdot\left(b+\frac{1}{c}\right)+1}{b+\frac{1}{c}}=\frac{a b c+a+c}{b c+1}=\frac{(a b+1) c+a}{b c+1}
$$

$=\frac{z_{2} \cdot c+z_{1}}{n_{2} c+n_{1}}$. Ebenjo erbält mant $\frac{z_{4}}{n_{4}}$, wenn man in $\frac{z_{3}}{n_{3}}$ fatt c ben Werth $c+\frac{1}{d}$ jebst, afio if
$\frac{z_{4}}{n_{4}}=\frac{z_{2}\left(c+\frac{1}{d}\right)+z_{1}}{n_{2}\left(c+\frac{1}{d}\right)+n_{1}}=\frac{z_{2} c d+z_{2}+z_{1} d}{n_{2} c d+n_{2}+n_{1} d}=\frac{\left(z_{2} c+z_{1}\right) d+z_{2}}{\left(n_{2} c+n_{1}\right) d+n_{2}}$ $=\frac{z_{3} d+z_{2}}{n_{3} d+n_{2}}$, u. ₹. \mathfrak{w}.

Der Beweis ber allgemeinen ©iultigfeit Deß Sake räßt fid Durd
 Diefer Sak für ben pten Mäbermigbtrud) $\frac{z_{p}}{n_{p}}$ gerte, Daj̧ aljo $\frac{z_{p}}{n_{p}}=\frac{z_{p-1} \cdot u+z_{p-2}}{n_{p-1} \cdot u+n_{p-2}}$ jei, jo erbält man $\frac{z_{p+1}}{n_{p+1}}$, wenn man hier u in $u+\frac{1}{r}$ übergeben ไäßt. ©ङ if alio $\frac{z_{p+1}}{n_{p+1}}=\frac{z_{p-1}\left(u+\frac{1}{r}\right)+z_{p-2}}{n_{p-1}\left(u+\frac{1}{r}\right)+n_{p-2}}$ $=\frac{z_{p-1} u r+z_{p-1}+z_{p-2} r}{n_{p-1} u r+n_{p-1}+n_{p-2} r}=\frac{\left(z_{p-1} u+z_{p-2}\right) r+z_{p-}}{\left(n_{p-1} u+n_{p-1}\right) r+n_{p-1}}$ $=\frac{z_{p} r+z_{p-1}}{n_{p} r+n_{p-1}}$; Der Sat gilt aljo aud für ben folgenben Näkerung ${ }^{2}=$ brud. Da Derjelbe mun für $p=2$ mid $p=3$ bereits bewtejen ift, fo folgt, Dã er aud) für $p=4$, mithin aud) mieberum für $p=5$, u. f. tw. gelte.

Sak 4. Die Differenz je zmeier auf einander folgender Mäherungbbrüde ift gleid einem Brude, Defien Babler 1 und Deffen Nenner Das Broduct ber Renter ber beiben Näge= rung gbrüde ift.

Betweiß: (๕ふ ift $\frac{z_{1}}{n_{1}}-\frac{z_{2}}{n_{2}}=\frac{a}{1}-\frac{a b+1}{b}=\frac{a b-(a b+1)}{1 \cdot b}$ $=-\frac{1}{b}$. E®enio fant man $\frac{z_{2}}{n_{2}}-\frac{z_{3}}{n_{3}} \mathfrak{u}$. f. w. beredifen.
$\mathfrak{U H L g e m e i n}$ ift $\frac{z_{p}}{n_{p}}-\frac{z_{p+1}}{n_{p+1}}=\frac{z_{p} \cdot n_{p+1}-z_{p+1} n_{p}}{n_{p} \cdot n_{p+1}}$, und Der 3ähler diejes \{uotienten gleiaj) $z_{p}\left(n_{p} r+n_{p-1}\right)-\left(z_{p} r+z_{p-1}\right) n_{p}$
$=z_{p} \cdot n_{p-1}-z_{p-1} n_{p}=-\left(z_{p-1} n_{p}-z_{p} \cdot n_{p-1}\right)$ ．Die bor $=$ Gergehende Differenz $\frac{z_{p-1}}{n_{p-1}}-\frac{z_{p}}{n_{p}}=\frac{z_{p-1} \cdot n_{p}-z_{p} n_{p-1}}{n_{p-1} \cdot n_{p}}$ hat jomit einen Bäbler von gleidjem abjolutem Werthe，aber entgegengejektem Wor＝ zeiden．Da nun ber Bähler ber erften Differemz－ 1 war，io ift der Bähler ber zweiten +1 ，ber Der britten mithin -1 u ．₹．w．AMgemein ift Daber

$$
\frac{z_{p}}{n_{p}}-\frac{z_{p+1}}{n_{p+1}}=(-1)^{p} \cdot \frac{1}{n_{p} \cdot n_{p+1}}
$$

$\mathfrak{A} \mathfrak{n}$ merfung：DaE bie Borzeidien ber Differenjen abmeatifeln，folgt i申ion แus Sab 2.

Sag゙5．Jeder Räherung sbrud ift von Dem vollfändigen Rettenbrud um weniger verifieden，ala von bem folgenden Raberung bbrud．

Der Beweis folgt Darauß̉，Dā̧ Die Näberungふ̈brüde abmedjfelno gröger und fletrer find als der volle Wierth．
 Dem bollen Werthe Des Rettenbrudjes weniger als ein Brud，Deffen るäh＝
 und bes Nenners Des auf ign folgenden ift．

Sat 6．Jeder folgende Rakerung̉brud fommt Dem volfen Werthe des Rettenbrudes näher als ber borker＝ gehende ఇäherung brud．

Beweiz：Dem Die Nemner $n_{p-1}, n_{p}, n_{p}+1, \ldots$ werben zufolge threr Entitebung nad Sa§s 3 immer größer，alfo ift $n_{p} \cdot n_{p+1}>n_{p-1} \cdot n_{p}$ ， $\operatorname{mith} \operatorname{in} \frac{1}{n_{p} \cdot n_{p+1}}<\frac{1}{n_{p-1} \cdot n_{p}}$ ．
 Deふ Rettenbrudes näker ala jeber andere Bruめ，Der in flei＝ neren Bablen ausgebrüaft ift．
 Brud，aljo $t<n_{p}$ ，jo ift

$$
\frac{z_{p-1}}{n_{p-1}}-\frac{s}{t}=\frac{z_{p-1} \cdot t-n_{p-1} \cdot s}{n_{p-1} \cdot t} \text { und }
$$

$\frac{z_{p-1}}{n_{p-1}}-\frac{z_{p}}{n_{p}}= \pm \frac{1}{n_{p-1} \cdot n_{p}}$ ．Da mun z_{p-1}, t, n_{p-1} und s ganze Bablen fint，jo ift aud $z_{p-1} \cdot t-n_{p-1} \cdot s$ eine ganze Babl，oder গull．Wäre ber genannte 马ähler gleid．Null，io wäre $\frac{s}{t}=\frac{z_{p-1}}{n_{p-1}}$ ，fäme alio Dem vollen Werthe Des Rettenbrudues meniger nake als $\frac{z_{p}}{n_{p}}$ ．Sît aber diejer 3 äbler >1 ，fo ift，ba $t<n_{p}$ ，aljo aud）$n_{p-1} \cdot t<n_{p-1} \cdot n_{p}$ ，
jeberfantl $\frac{z_{p-1}}{n_{p}-1}-\frac{s}{t}> \pm\left(\frac{z_{p-1}}{n_{p}-1}-\frac{z_{p}}{n_{p}}\right)$ ．Šierauş folgt，Dā̄ $\frac{s}{t}$ nidit zwiidjen $\frac{z_{p-1}}{n_{p-1}}$ und $\frac{z_{p}}{n_{p}}$ Hiegen fann und bafer autd won ben zwi＝ ¡千wen biefen Beiben Briüden liegenben vollen W̧erthe Des Rettenbrudib weiter entfernt ift，als jeber von jenen．

அnmerfung：ひus bem vorfethenben Saj erflärt fiif bie Benenming
 Werthe if nadi Sak 5 fleiner als $\frac{1}{n_{p} \cdot n_{p}+1}$ ．Sit n_{p+1} niबit beredmet，fo fann man，on $n_{p+1}<n_{p}$ ifi，fatt biefer Fehfergrenge bie gröbere $\frac{1}{n_{p}{ }^{2}}$ fegern．

§ 44．（fnmenbungen ber Settenbriitic．

$\mathfrak{A u f g a b e}$ 1：©inen gementen $\mathfrak{B r u d}$ in einen Rettenbrudi）子u ver＝ mandelt．

Яtuflofung：Man Dividire mit Dem Nemer in Den Bäfler，Dant mit Dem $\Re i f t$ in Den Nenner，und fahre fo fort，indem man immer mit Dem Reit in Den borgergebenden Divifor Dividirt，bis bie Divifion anfgebt． Die einzelnen ఇuotienten find bie © ©liteber beß verlangten Rettentrudjes．

Bempiz：Sind a, b, c, d u．f．m．Die einzefnen Suotienten，r_{1}, r_{2} ， r_{3} u．j．w．Die \Re efte，fo ift $\frac{A}{B}=a+\frac{r_{1}}{B}=a+\frac{1}{\left(\frac{B}{r_{1}}\right)}=$ $a+\frac{1}{b+\frac{r_{2}}{r_{1}}}=a+\frac{1}{b+\frac{1}{\left(\frac{r_{1}}{r_{2}}\right)}}=a+\frac{1}{b+\frac{1}{c+\frac{r_{3}}{r_{2}}} \text { u．1．．．．}}$

Knmerfung：Da jeber folgenbe æefit fleiner als ber borfergetjenbe fein
 bei ber Divifion mit bem Æefte 1 und nadg bobdifens B Divifionen．
 gemeinen Brud 刃äberung berthe zu finden，welde bei einem befannten Grade der Sbenauigfeit in möglidjf fleinen Bahlen auşgedrüăt fint．

Dieje einfadjeren und daber bequemeren Rabberungabertbe Dürfen in practifden Redmangen fatt Deß gegebenen Brudjes gefegt werden，fallz bei diejen Жednungen eine Ungenanigfeit innerbalb ber betreffenden Fefflergrenze geftattet ift．
 brïdje，jofern man biefelben in abgetiurzter form ats gemeine Briidje näberung weife aufitellt unt befandelt．

So find 子. B. für $\pi=3,1415926$. . Die erften Näberungşwertbe (auß $\pi=\frac{31415926}{10000000}$ beredinet) $3, \frac{22}{7}, \frac{333}{106}, \frac{355}{113} \mathfrak{t}$. ई. w., Die Eebler= grenzen bezüglid, $\frac{1}{7}=01 \ldots, \frac{1}{742}=0,001 \ldots, \frac{1}{11978}=0,00008 \ldots$, $\frac{1}{3114845}=0,0000003 \ldots$ u. f. ซ. .

* $\mathfrak{A l f g a b e}$ 2. ©ine irrationale Suabratwurzel in einen Retten= Grud bu verwandely.

$\sqrt{19}=4+\frac{1}{\alpha}, \frac{1}{\alpha}=\sqrt{19}-4, \alpha=\frac{1}{\sqrt{19}-4}=\frac{\sqrt{19}+4}{19-16}=$
$\frac{\sqrt{19}+4}{3}=2+\frac{1}{\beta}, \frac{1}{\beta}=\frac{\sqrt{19}-2}{3}, \beta=\frac{3(\sqrt{19}+2)}{15}=$
$\frac{\sqrt{19}+2}{5}=1+\frac{1}{\gamma}, \frac{1}{\gamma}=\frac{\sqrt{19}-3}{5}, \gamma=\frac{5(\sqrt{19}+3)}{10}=$
$\frac{\sqrt{19}+3}{2}=3+\frac{1}{\delta}, \frac{1}{\delta}=\frac{\sqrt{19}-3}{2}, \delta=\frac{2(\sqrt{19}+3)}{10}=$
$\frac{\sqrt{19}+3}{5}=1+\frac{1}{\varepsilon}, \frac{1}{\varepsilon}=\frac{\sqrt{19}-2}{5}, \varepsilon=\frac{5(\sqrt{19}+2)}{15}=$
$\frac{\sqrt{19}+2}{3}=2+\frac{1}{\xi^{\prime}}, \frac{1}{\xi}=\frac{\sqrt{19}-4}{3}, \xi=\frac{3(\sqrt{19}+4)}{3}=$
$\sqrt{19}+4=8+\frac{1}{\eta}, \frac{1}{\eta}=\sqrt{19}-4=\frac{1}{\alpha}, \eta=\alpha$, и. โ.т.
$\sqrt{19}=4+\frac{1}{2+\frac{1}{1+\frac{1}{1}}}$

$$
3+\frac{1}{1+\frac{1}{2+\frac{1}{2}}}
$$

$$
\begin{aligned}
& 8+\frac{1}{2+\frac{1}{1+\frac{1}{3+}}} \\
& \text { find bemmad. } \\
& \frac{170}{39}, \frac{1421}{326}, \text { и. โ. º., }
\end{aligned}
$$

Die zeblergrenzen find bezüglidy

$$
\frac{1}{2}, \frac{1}{6}, \frac{1}{33}, \frac{1}{154}, \frac{1}{546}, \frac{1}{12714}, \frac{1}{225266}, \text { ober }
$$

Die Werthe für $\sqrt{19}$ fino

$$
4,0 ; 4,5 ; 4,33 ; 4,363 ; 4,357 ; 4,3589 ; 4,358895
$$

mit Greblergrenzen bezüglid. gleicu):

$$
0,5 ; 0,17 ; 0,03 \ldots ; 0,006 \ldots ; 0,0018 \ldots ; 0,000078 \ldots ;
$$

(ぞs if aljo $\sqrt{19}=4,358895$ auf 5 Decimalen genau, und bie $\mathfrak{A k}$ weidung wom wahren Werthe beträgt weniger alz $0,000004 \ldots$ Die birecte Beredyung ergiebt $\sqrt{19}=4,358899$.
\mathfrak{Y} nmerfung: (Ein unenolidjer תettenbruad, befien ©sfieber fiid, bon irgeno einer Stelle an, regetmäßig wieberbolen, beibt ein periobifajer. - Sebe irrationale

* \mathfrak{A} uggabe 3: (Umtefrung.) (Einen periodifajen Rettenbrudi in einen geidlofienen (irrationalen) 2 (ußbrut zu vermandeln.
$\mathfrak{H} \mathfrak{H f l b j u n g : ~ E ̌ z ~ f e i e n ~} a, b, \ldots n$ bie Der ßeriobe borautgehenden Glieder, $\alpha, \beta, \ldots \nu$ bie (3lieder Der Weriode, io jeşe man $x=\frac{1}{\alpha+\frac{1}{\beta+}}+\frac{1}{v+x}$

Mian verwandele biejen Rettenbrudu
in einen gemeinen Brud und löje Die baburdic entftebende quabratijige (Sleidung auf x auf. Den Werth von x jebe man in Die (Bleidung ein und bringe aud biejen endidifen $K=a+\frac{1}{b+}+\frac{1}{n+x}$
Rettenbruø్ auf bie form eines gemeinen Brudeş.

* $\mathfrak{H} \mathfrak{u} f g a b e$ 4. ©inen \mathcal{E} garithmus mitteljt Berwandlung in einent Rettenbrud näberungzweife zu beredune.

(E) fei $\log 2=x$ zu beredjnen, io ift $10^{x}=2$, aljo liegt, Da bie Fotenz 10^{x} fidx bei einer Weränberung Des Exponenten x in gleidyem Sinme ändert und $10^{0}=1,10^{1}=10$ ijt, x zwiidjen 0 und 1. Man feşe Daber $x=\frac{1}{\alpha}$, jo ift $10^{\frac{1}{\alpha}}=2,10=2^{\alpha}$. Da ferner $2^{3}=8,2^{4}=16$ ift, jo liegt α zwiidjen 3 und 4 ©anzen, man fann aljo $\alpha=3+\frac{1}{\beta}$ feşen, worauk banu $10=2^{3} \cdot 2^{\frac{1}{\beta}} ; 2^{\frac{1}{\beta}}=\frac{10}{8}, 2=\left(\frac{10}{8}\right)^{\beta}=1,25^{\beta}$ forgt. Da $1,25^{3}=1,953125$ und $1,25^{4}=2,44140625$ ift, io jetse mant $\beta=3+\frac{1}{\gamma}$, aljo $2=1,25^{3} \cdot 1,25 \gamma^{1}, 1,25=\left(\frac{2}{1,953125}\right)^{\gamma}$. Die weitere Fortjeß̨ung bes ßerfahrens ift hieraus von jelgit flar. Man erbält
auf Diejem Wege $\gamma=9+\frac{1}{\delta} ; \delta=2+\frac{1}{\varepsilon}, \varepsilon=2+\frac{1}{\xi}, \xi=4+\frac{1}{\eta}$, u. f. w. Waker if $\log 2=\frac{1}{3}$

$$
3+\frac{1}{3+\frac{1}{9+\frac{1}{2+\frac{1}{2+\frac{1}{4+}}}}}
$$

Die 刃äberung sbruidje für $\log 2$ fint alio:
$\frac{1}{3}, \frac{3}{10}, \frac{28}{93}, \frac{59}{196^{\prime}}, \frac{146}{485}$, u. ₹. w., Die Feflergrenzen $\frac{1}{30}, \frac{1}{930}, \frac{1}{18228}$, $\frac{1}{95060}, \frac{1}{1035960}$, ober in Decimalbribden:
 0,3010309 und Die Feflergrenzen: $0,03 \ldots, 0,001 \ldots ; 0,00005 \ldots$, $0,00001 \ldots, 0,00000096 \ldots$ es if afio bis auf 6 Decimaten genau: $\log 2=0,301030$.

* $\mathfrak{A u f g a b e} 5$. Eine georbnete Cleidung höheren (Bradeß mit einer

Beipplet: $x^{4}-2 x^{3}+4 x^{2}-2 x-5=0$.
Wie linte Seite Der (bfleiduung erbält Durdi) Die Subjtitutionen $x=0$, $x=1, x=2$ bezüglidy Die $\mathfrak{W e r t h e}-5,-4,+7$. Smijdjen $x=1$ und $x=2$ wird Demnady ein Werth bon x liegen, für melden ber Heber= gang Desె Werthes ber linten Seite auz dem Segativen in̉ Wojitive fatt= findet, D. K. Für meldan Diejer leţtere Werth gleidy Sull if. Daker feke man $x=1+\frac{1}{y}$. Subptituint man diejen WSerth für x in Die gegebene (3) Ceidung und entwiffelt die einzelnen Botenzen, fo erbält man
$1+\frac{4}{y}+\frac{6}{y^{2}}+\frac{4}{y^{3}}+\frac{1}{y^{4}}$
$-2-\frac{6}{y}-\frac{6}{y^{2}}-\frac{2}{y^{3}}$
$+4+\frac{8}{y}+\frac{4}{y^{2}}$
$-2-\frac{2}{y}$
$-5=0$, oder $-4+\frac{4}{y}+\frac{4}{y^{2}}+\frac{2}{y^{3}}+\frac{1}{y^{4}}=0$, ober, went mant mit $-y^{4}$ multiplicirt, $4 y^{4}-4 y^{3}-4 y^{2}-2 y-1=0$.

Subftituirt man Gier wieder nady und nad. $y=0, y=1, y=2$, io erbält man für bie linte Seite ber Gbleiduung beziehungbweife - 1 ,
$-7,+11$ ，alfo jegt man $y=1+\frac{1}{z}$ ．Die ©ubititution Diefes Weethes für y in Die leg̣te Gたlidfung führt in Derfelfen Werije zu ber neuen GKeidung $7 z^{4}+6 z^{3}-8 z^{2}-12 z-4=0$ ，Deren linfe Seite für $z=0,1,2$ begägliď $\mathfrak{z u}^{4}-4,-11,+100$ wirb．Daher iff wieder $z=1+\frac{1}{u}$ ，und hieraus folgt

$$
11 u^{4}-18 u^{3}-52 u^{2}-34 u-7=0 .
$$

Die ©ubfitutionen $u=0,1,2,3,4$ ergeben besinglidi－ 7 ， $-100,-251,-172,+689$ ，alfo fegt man $u=3+\frac{1}{v}$ ．
§n diefer Weeije fährt man fort，biz der nöthige Grad von（Genauig＝ feit erreidft it．
（Ex）iftatio $x=1+\frac{1}{1+\frac{1}{1+\frac{1}{3}+2}}$

Fefflergrenzen：$\frac{1}{1}, \frac{1}{2}, \frac{1}{14},\left(\frac{1}{49}\right), \ldots$
＊6．Antwenbung Der Rettenbrüdje zur $\mathfrak{A u f l o f u n g ~ D i o p h a n = ~}$ tifぁぁer $\mathfrak{A u f g a b e n ~ (v e r g l . ~ 2 n t h a n g ~ 6) . ~}$
 $a x+b y=c$, in welder a, b, c relative Brimzablen find，für ganze Wertbe Der Unbefaunten x, y auffulbijen，io verwanbele man ben $\mathfrak{B r u d}$ $\frac{b}{a}$ in einen Settenbrud）und bereáne bie Mâherumgsbruide beffelfern．Sit $\frac{p}{q}$ Der leţte Defeer Mäherurgzbriulde（afio Der Dem genauen Wierthe $\frac{b}{a}$ unmittel＝ bar vorangelferte），fo ift nady Sak 4：$\frac{p}{q}-\frac{b}{a}= \pm \frac{1}{q \cdot a}$ ，ober $a \cdot p-b \cdot q= \pm 1$ ，mid baber auă

$$
a \cdot p c-b \cdot q c= \pm c, \text {, Deer } a \cdot(\pm p c)+b \cdot(\mp q c)=c
$$

Wergleidet man Diefe © Gleidung mit Der gegebenen $a x+b y=c$ ， To fiefty man，bā̄ $x_{1}= \pm p \cdot c, y_{1}=\mp q c$ cin ber Leşteren genuigendeé Waar von ganzen $\mathfrak{E s e r t h e n}$ für x uno y fein muई．

2lus biefem cinen Faare vor WSurzeln Der gegebenen（ffeidung Lafien fiid aber alle anberen ableiten，Denn if x_{2}, y_{2} ein zweites 23 urzelpaar， To tam man Dafielbe in Den formen $x_{2}=x_{1}+u, y_{2}=y_{1}-v$ ídreiben（too alio $u=x_{2}-x_{1}, v=y_{1}-y_{2}$ ifit），und es ift bann $a\left(x_{1}+u\right)+b\left(y_{1}-v\right)=a x_{1}+b y_{1}+a u-b v=c$ ，$a \mathfrak{l j o}, \mathrm{~b} a$ $a x_{1}+b y_{1}=c$ ift，$a u-b v=0$ ，ober $a u=b v$ ．Da aber nur
gante Bablen vortomment fönten, fo muß b ein Theiler von $a u$ feint, unt
 son u, oder u hat Die Form $b n$. Ebenjo folgt, Dā́ a ein Theiler oont v, oder $v=a \cdot \frac{u}{b}=a \cdot n$ iit. Daker ift jebes weitere Wurzelpaar ber gegebenten (Sileidung in ben formeln $x=x_{1}+b n, y=y_{1}$ - an enthaltent, in weldjent n jede beltebige ganze Dabl bedentent fann. Daj̄ ungeléebrt jedes it diejen formeln enthaltene W̧ureelpaar ber gegebenen ©fleidung genuigt, if leiât zu beweifen.
\mathfrak{U} nmerfung: Sat bie gegebene Sleidung bie form $a x-b y=c$, , feşe man ftatt y, - y^{\prime}, löje bie Gleiduung $a x+b y^{\prime}=c$ auf umb febre bant bas Zeiden bon y^{\prime} um. Man erfălt alfo: $x=x_{1}+b n, y=-y_{1}+a n$.

Beifpiel: $25 x+56 y=187 ; \frac{56}{25}=2+\frac{1}{4+\frac{1}{6}} ; 2+\frac{1}{4}=\frac{9}{4} ; 25 \cdot 9-56 \cdot 4$ $=+1 ; x_{1}=9 \cdot 187=1683, y_{1}=-4 \cdot 187=-748, x=1683+56 n$, $y=-748-25 n$.
 fein. $\mathfrak{J i t}-n<30$, fo witb y negativ, ift $-n>30$, io wird x negativ, dather mu® $n=-30$ fein, alfo ift $x=3, y=2$.

Onmerfutg: Şat man aus $x=x_{1}+b n, y=y_{1}$-an zwei andere Weerthe bont x und y abgeleitet, fo bari man lebstere ant Stelle bon x_{1} und y_{1} in bie Formeln cinfeten.
§eis § 85, 87. Batbey XX.

X. Capitel.

§ 45.

Die Combinationslehre handelt von ben beridiedenen mög= Iiduen \mathfrak{A} rten bon $\mathfrak{Z u j a m m e n f t e l l u n g e n ~ g e g e b e n e r ~ © f r o ̈ b e n . ~ D i e j e l b e ~ n i m m t ~}$
 alfein auf Die \mathfrak{A} norbnung oder ©ruppirung Derjelben. Die eingelten
 ftabert a, b, c, d - oder $a_{1}, a_{2}, a_{3}, a_{4}$, - oder burd Biffern 1, 2, 3, 4 - begeidfnet. Man nimmt cine beftimmte Reihenfolge Der Elemente alz Die urjprünglide an, z. \mathfrak{B}. Die alphabetifide a, b, c, d, - ober Die Der natïrlidjen Zablenreife 1, 2, 3, 4, - und nennt jebes Eflement, weldjes in Diejer urjprünglidjen शeibenfolge fpäter alz ein andere Göhere, und leģteres das niedere bon beiben.

Jebe 2 uiammenftellung Der gegebenen Elemente beip̆ cine Com = plexion. Man unteridueibet brei veridutedene \mathfrak{A} (rten joldjer $\mathfrak{B u j a m m e n t}=$ ftellugen, nämlid Wermutationen, Combinationen im engeren Sinne und Bariationen.

§ 46.

Bermutationen find jolde Complexionten, won benen eine jede「ämmtlide gegebene EEtemente entioalt, in Denen alfo mur Die Feibenfolge Der einzefnen EEfemente beriditeden ift.

Die Fermutationen zweier Crlemente 1,2 find 12 und 21 , bie Wermutationen breier E-Temente 1, 2, 3 find 123, 132, 213, 231, 312, 321 , Die von bier Člementen: 1234, 1243, 1324, 1342, 1423, 1432, $2134,2143,2314,2341,2413,2431,3124,3142,3214,3241$, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321.

Man erbält bie jämmtliden Wermutationen bon n gegebenen Celemen= ten it georoneter Reibenfolge, wenn man jedes berfelben cinmal ant Die erfte Stelle fetst, in jedem biejer n Fälle jebes der nody übrigen $n-1$ Glemente cimmal an bie zweite Stefle, Dann in jedem Diejer $n \cdot(n-1)$ Fälle jedes der nod uibrigen Efemente cinmal an die britte Stelle jeţt, und io fortfäfint bis zum lebten Elemente.
§eieraus ergiebt fin zunädit, Das bie $\mathfrak{A n z a h y}$ Der Bermuta= tionen bon n Elementen gleidy $n \cdot(n-1) \cdot(n-2) \ldots \cdot 2 \cdot 1$,
 $n!$ (n Facultät) bezeidnnet.

Für Die geordmete 2 Hffitelfung Der einzelnen \mathfrak{B} ermutationen fann man aud die Regel anwenden, Dan man, von ber urppriungliden Reibenfolge ausigebend, fucceffive immer Daş dem (Ende nädifte nod einer
 Diejem ergibten (efement nod) folgenden Stellen jedesmal io niedrig als möglidy bejeţt.

Befinden fidi unter ben n gegebenen Crlementen α einander gleidie Elemente, fo wiro bie $\mathfrak{A x z a b l}$. Der Fermutationen fleiner. Dentt man fid gunädfit alle n ©femente als von einander verjditeden mio, wie worker angegeben, Die n ! \$ermutationen Derjelfen gebildet, io werben, wenn man Darauf jene α (Elemente cinander gleid) jebst, alle biejenigen Fermutationen identifa, welde fid von einander mur burdif eine veridiedent Stellung Diefer α Eremente unteridedeiden. Sede eingelte sermutation miederbolt fids
 gleidjen Clemente beträgt, D. G. $\alpha!$ mal, mithin ift bie $\mathfrak{A n z a h l}$ ber von einander veriduteDenen Wermutationen ber n (Elemente gleid)

$$
\frac{n!}{\alpha!}=\frac{1 \cdot 2 \cdot 3 \ldots n}{1 \cdot 2 \cdot 3 \ldots \alpha}
$$

Sind auker Den genannten α Efementen nodg β gleide Elemente einer anderen $\mathfrak{A r t}$ borbanden, io findet man burd cine entiprediende Swlu $\bar{B}=$ folgerung bie \mathfrak{A} rigahl der von einander veridiebenen Wermutationen gleid $\frac{n!}{\alpha!\cdot \beta!}$, find augerbem γ einander gleidje Elemente einer britten \mathfrak{H} rt worbanden, fo ift Diefe $\mathfrak{A n z a f l}$ glcia $\frac{n!}{\alpha!\cdot \beta!\cdot \gamma!}$, u. f. wo.

Bujab: Sind α Elemente einanber gleid und bie übrigen $n-\alpha$ Elemente ebenfalls einanber gleia, io ift bie \mathfrak{H} zabl ber Bermutationent
gleid $\frac{n!}{\alpha!\cdot(n-\alpha)!}$, oder $\frac{1 \cdot 2 \cdot 3 \cdots n}{1 \cdot 2 \cdot 3 \cdots \alpha \cdot 1 \cdot 2 \cdot 3 \cdots(n-\alpha)}$, aljo, wenn man ben Zähler burd den erfen ober burd ben zweiten Factorencomplex Des 刃enners dividirt (hebt),
$\frac{n \cdot(n-1)(n-2) \cdots(\alpha+1)}{1 \cdot 2 \cdot 3 \cdots(n-\alpha)}=\frac{n=(n-1) \cdot(n-2) \cdots(n-\alpha+1)}{1 \cdot 2 \cdot 3 \cdots \alpha}$
 bon Wermutationen bon n gegebenen (Etementen eine gegebene Wer= mutation ift.

Beifpier: Die mievielte ßermutation if 432122514 bon 112223445 ?
அuflbjung: Der gegebenen æermutation gefen boraus 1) alle, weldfe
 (Sfieber 12223445 folgen, gleid $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8}{1 \cdot 2 \cdot 3 \cdot 1 \cdot 2}=3360$ it; 2) alle, welde mit 2 beginnen, aflo $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8}{1 \cdot 2 \cdot 1 \cdot 2 \cdot 1 \cdot 2}=5040$, 3) alle, welde mit 3 beginnen, alfo $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot \mathbf{7} \cdot 8}{1 \cdot 2 \cdot 1 \cdot \mathbf{2} \cdot \mathbf{3} \cdot \mathbf{1} \cdot \mathbf{2}}=1680$, 4) alfe, welfoe mit 41 begin= nen, affo $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}{1 \cdot 2 \cdot 3}=840$, 5) afle mit 42 begimenben, ober $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}{1 \cdot 2 \cdot 1 \cdot 2}=1260,6$ alle mit 431 beginnenben, ober $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}{1 \cdot 2 \cdot 3}$ $=120,7$) alle mit 43211 beginnenben, ober $\frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 2}=12,8$) alle mit 432121 begimenben, affo $1 \cdot 2 \cdot 3=6,9$) alle mit 4321224 beginnenben, alio $2 \cdot 1 \cdot 2=4$, affo if 432122514 bie 12323te Fermutation.
 ifrer Stellenzahl angugeben, ofne Dā̄ bie ifr vorhergehenden gebildet werDen.

Beifpiel: Weldues if bie 513te ßernutation bon 11123334?
 $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}{1 \cdot 2 \cdot 1 \cdot 2 \cdot 3}=420$, bie ber mit 2 beginnenben gfeifif $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}{1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 3}$ $=140$, bafer ift bie gefufite Wermutation bie $513-420=93$ te biefer zroeiten
 tationen gleidi $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}{1 \cdot 2 \cdot 1 \cdot 2 \cdot 3}=60$, bie $\mathfrak{N n n}_{3}$ abl ber mit 3 beginnenben gleidf $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}{1 \cdot 2 \cdot 3 \cdot 1 \cdot 2}=60$, affo if bie gegebene bie $93-60=33$ te biefer zweiten $\mathfrak{u n t e r o r b m u n g}$. Inmerfalb ber legteren bat man $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{1 \cdot 2 \cdot 1 \cdot 2}=30 \mathrm{mit} 1$ beginnenbe unb fobann $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{1 \cdot 2 \cdot 3}=20$ mit 3 beginnenbe, alfo ift bic gefurite bie $33-30$ te ber mit 233 anfangenben $\mathfrak{P e r m u t a t i o n e n . ~ U n t e r ~ b i e f e n ~}$ fangen $\frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 2}=12$ mit 1 an, und befinbet fiad bie gefudite mitthin
unter biefen Yeßteren. Fon ben mit 2331 begintenben giebt eq mieber zunäajf 1.2. $3=6$ mit 1 und untex biejen wieber $1 \cdot 2=2$ mit 1 beginnenbe, es if alfo bie gefudite bie erfte ber bier folgenden, ober 23311314.

§ 47.

Man fann ferner foldue Complexionen gegebener Elemente bilden, weldje eine beftimmte $\mathfrak{A l n z a h i l}$ Der leģteren enthalten, wie z. B. Die $\mathfrak{S u}=$ fammenftellungen von 4 Elementen 1, 2, 3, 4 子u ie breien, alio: 123, $124,132,134,142,124,213,231,321,312,412,413$, u. โ. w. J̌e nad̆ Der $\mathfrak{Y r z a b l}$ ber in ignen enthaltenen Eflemente unteridjeibet man (5om= plexionent Der erften, zweiten, \mathfrak{u}. f. w., pten Elafie.

Bildet man alle Complexionen von n Elementen zur p ten Clafie, fo Laffen fid Diefelben in Gruppen orbnen, Dergeitalt, Daß bie innerbalb jeder einzelnen Sruppe ftebenden Complexionen Diefelben Ǧlemente enthalten und fid alio von einander mur Durd Die Reibenfolge Diefer (Elemente unter= ideiben, während Complexionen aus veridiedenen (Stuppent aud ganz oder theilmeife verjकiedene Elemente entharten. So erbält man z. \mathfrak{B}. für bie 4 Elemente 1, 2, 3, 4 und Die Dritte Elaffe Die folgende Ernppirung:

123	124	134	234
132	142	143	243
213	214	314	324
231	241	341	342
312	412	413	423
321	421	431	432.

Man fieht Yeidt ein, DaÉ Die imnergatb ciner und berfelben (Gnuppe ftelenden Complexionen aus jeber beliebigen einzelnen bon ifnen burd Sermutation erbalten werden.

In jolden fällen, in welden die æeihenfolge der eingelnen Elemente gleidgiültig if und mur die veridjiedene 2 Uuşwaht der mit einander verbun= Denen (Efemente in Betradit fommt, geniigt Daber bie \mathfrak{A} thgabe einer einzigen (Somplexion aus jeder ber angegebenen ©ruppen. Man hat in diejemt grall bie Combinationen ber gegebenen Elemente zu Der betreffenden Elafie. (5. if it tbeoretifa) gleidigültig, weldje Der in einer (5tuppe ent= Galtenen Complexionen als stellvertreterin diefer Gruppe ausgewafitt wird; Da mun in jeder (Sruppe fid eine und mur eine foldie Form befindet, in meldjer bie Elemente in Der als uripringlidi) gegeben angenommenent (alpha= betijden oder aritymetijiden) 丹eibenfolge auf einander folgen, fo empfieblt fich aus practifden (strünen Die Wafl Diefer georbneten Complexionen. Wird Dagegen aub Die beridiebene Reibenfolge Der Elemente beriutifitiotigt, io hat man die entipredenden Bartationen.
(5 ombinationen im engeren ©inn find aljo bie mit §üdfixt nur auf bie \mathfrak{A} ngabl und auf bie $\mathfrak{H u} \mathfrak{w a h l}$, $\mathfrak{B a r i a t i o n e n ~ b i e ~ m i t ~ \Re u ̈ u f i c h t ~}$

[^0]fämmitlide $\mathfrak{F e r m u t a t i o n e n ~ b i l b e t . ~ - ~ B o n ~} n$ Elementen giebt es zur nten Elafie nur eine Combination, biefelbe if mit ber uripriinglideen \mathfrak{A} norbmung ber Elemente ibentiid. Die Bariationen won n Glementen zur n ten ©lafie find zugleid. Bermu= tationen berfelben. - Jebe 2tufeinanberfolge zweier Elemente, in weldjer bas Göhere bem nieberen boraubgeft, Ђei巨t eine Suberfion. Sei bem ©ombiniren im engeren Sinn werben alfo bie Bariationen, welde Jinverfionen enthalten, weggelafien.

Man unterideibet ferner Wariationen und Combinationen mit oder obne Wiederbolungen. Bei leģteren Darf jedes Element in Derjetben (5 om= plexion nur cinmal, bei eriteren bagegen dari es wiederbolt gejekt werden. Die Wiederbolbarfeit fann unbeiduränft fein, oder eß fant nur eine
 laubt jein.

§ 48.

Unt die (5ombinationen von n Extementen zur p ten Claffe ohne Wiederkolutgen zu bilden, begime mat mit Der aus den p erften Elementen in ifrer urjprünglidjen Reigenfolge beftegenden Eomplexion und bilde aus ifr nady und nady afle ubbrigen Eombinationen, indem man immer Das am weiteften nady redots fetjende (Frement, weldees einer Grbjo bung fäbig ift, io wenig als möglidy erbight und Dabei flets beadftet, DaE feine Umfehrung Der georDneten そeifenfolge (Inverfion) bortommen barf.

So find z. \mathfrak{B}. Die Combinationen bon 123456 zur Dritten Claffe obne Wiebergolungen: $123,124,125,126,134,135,136,145,146,156$ $234,235,236,245,246,256,345,346,356,456$.
$\mathfrak{H m}$ die ©ombinationen won n ETementen zur p ten Slafie mit
 Den, verfabre man it gleider Weife, beginne jedod mit berienigen Comt= plexion, weldje bas erfte Element p mal enthalt und beadfte, Daß nad jedem Element einer Eomplerion nidit blos jedes ber höberen, fondern aud) Das gleidje element folgen famt.

So find z. B. Die Combinationen woon $a b c d e$ zur vierten ©faffe mit Wiederbolungen:
aaaa, aaab, aaac, aaad, aaae, $a a b b, a a b c, a a b d, a a b e, a a c c, a a c d, a a c e, a a d d, a a d e, a a e e$, $a b b b, a b b c, a b b d, a b b e, a b c c, a b c d, a b c e, a b d d, a b d e, a b e e$, $a c c c, a c c d, a c c e, a c d d, a c d e, a c e e, a d d d, a d d e, a d e e$, aeee, $b b b b, b b b c, b b b d, b b b e, b b c c, b b c d, b b c e, b b d d, b b d e, b b e e$, $b c c c, b c c d, b c c e, b c d d, b c d e, b c e e, b d d d, b d d e, b d e e, b e e e$, $c c c c, c c c d, c c c e, c c d d, c c d e, c c e e, c d d d, c d d e, c d e e, c e e e$, dddd, ddde, ddee, deee, eeee.

Die Bariationen von n Elementert zur p ten Claffe lafien fidy jowofyl mit als ofne Wiederholungen bilden, indem man zunaddit Die ent= ipredjenden Eombinationen und bant von jeber Der leşteren Die Wermu= tationen aufitellt.

Sber man jeß̧e für ßariationen obne Witederbolungen jebes Der n

Elemente cinmal an bie erjte Stelle, laffe in jeden diejer n Fälle jedes ber nod übrigen $n-1$ (Flemente cinmal an bie zweite Stelle treten, jobann in jebem der jo ergaltenen $n \cdot(n-1)$ Jatlle jebes der nod übrigen $n-2$ (Exemente cinmal Die britte ©telle einnebmen und fabre fo fort, bis jede (5omplexion p Elemente enthält.

F̛ür $\mathfrak{F a r i a t i o n e n ~ m i t ~ (u n b e i d u r a ̈ n t e r) ~ W i e d e r h o l u n g ~ v e r f a b r e ~ m a n ~ i n ~}$ Derfelken Weife, nur daẼ jebesmal nidat blos jedes der nod übrigen, jon= Dern jedes der n Eftemente überbaupt eimmal an bie nädaffolgende Stelle gejegt werben muฐ.

So find z. B. Die Bariationen won 1234 zut Dritten (elafie a) ohnte Wiederfolungen:
$123,124,132,134,142,143,213,214,231,234,241,243,312$, $314,321,324,341,342,412,413,421,423,431,432$.
b) mit W̧iederlyolungen:
$111,112,113,114-121,122,123,124-131,132,133,134-$ 141, 142, 143, 144.
$211,212,213,214,-221,222,223,224,-231,232,233,234-$ 241, 242, 243, 244.
311, 312, 313, 314-321, 322, 323, 324-331, 332, 333, 334341, 342, 343, 344.
411, 412, 413, 414-421, 422, 423, 424-431, 432 433, 434441, 442, 443, 444.

§ 49.

2fub ber zule zt angefultrten Methode Der $\mathfrak{A l f i f t l f u n g ~ D e r ~ B a r i a t i o n e n ~}$

a) bei Bariationen ohne Wiederbolungen:

$$
n \cdot(n-1) \cdot(n-2) \cdots(n-p+1)
$$

b) Eei $\mathfrak{B a r i a t i o n e n}$ mit Wiederbolungen:

$$
n^{p} .
$$

Bezeidnt ferner C_{n}^{p} Die $2 \mathfrak{A n} n a b l$ Der Combinationen bon n (Elementen zur pten Elaffe ohne Wiederholungen, und Dentt man fid biefe Combina= tionen aufgejellt, fo lafien fide von jeber Derjelben $1 \cdot 2 \cdot 3 \cdots p=p$! Bermutationen bilden und ift Daher $C_{n}^{p} \cdot p$! Die \mathfrak{A} ngabl Der entipredjenden Batiationen. §ieraus folgt:

$$
C_{n}^{p}=\frac{n \cdot(n-1) \cdot(n-2) \cdots(n-p+1)}{1 \cdot 2 \cdot 3 \cdots p}
$$

ぞur bie Combinationen mit Wiederbolungen läß̈t fial eine ent=
 mutationen je nadd ber $\mathfrak{Y} \mathfrak{H}_{\mathfrak{z}}$ abl Der in Der einzeften (Sombination bor= fommenden gleidjen (Elemente veridieden ift. In biejem Jalle fann man folgende 9 Ubleitung antwenden:

Man Dente fidd fämmtlidje Combinationen Der n (Efemente 123 u. f. w. zur p ten Claffe mit Wiederfolungen Gingefarieben und erfoble jobant in
jeber eingelnen bon ifnen das zweite Extement um eine Stelle, Das britte um zwei, Daß vierte um סrei Stellen u. f. wo. Gis zum leşten, weldjees unt $p-1$ Stellen ergäht wird. Man erhält Dant eine $\mathfrak{2 l n}$ zabl neuer Com= plexionen, und zhar von $n+p-1$ Elementen. Man fiebt nun leidit
 ergügt mird - aud in ben neuen (Emplexionen niemalz ein nederes Clement auf ein häberes folgen wird, fowie Dás in feiner berfelben eirt Gexement miedergolt voriommen fann. Denn für je zwei neben einander ftegende EFlemente, weldje uriprünglide einander gleidy waren, erbält man jeģt zwei aufeinander folgende verjøiedene, und für zwei urjprïnglidy weridiedene Elemente ergalt man jebst wieder zwei berfditedene, Da das an jpäterer Stefle febende böhere Cefement um mebr erbïht wird, ala daş an Der vorbergejenden Stelle ftekende niedere CElement. Die neuen Somple= xionen find alio (5ombinationen von $n+p-1$ Elementen obne witeder= Holungen. (Endidid entgalten Diejelben aud affe mögliden foldjen Combi= nationen, Denn jede befiebige ber leţteren fann umgefebit iourd entipredjende Erniedrigung Der einzelnen Stellen auf eine Der Eombinationen bon n Ele= menten zur qten ©laffe mit Wiedergolungen zurütgefüht werDen. ESz ift Daker bie $\mathfrak{A x}$ nably der neuen (Emplexionen und fomit aud) Die ify gleide $\mathfrak{2}$ naghl Der (Eombinationen von n (Exementen zur pten Clafie mit Wieder= Golungen gleid) Der $\mathfrak{A l n} \mathfrak{z a f l}$ Der Combinationen von $n+p-1$ Iementen -hne Wiederholungen, oder gleid

$$
\frac{(n+p-1)(n+p-2)(n+p-3) \cdots(n+p-1-p+1)}{2} \frac{1}{2} \cdots \quad
$$

ober gleidu

$$
\frac{n \cdot(n+1)(n+2) \cdots(n+p-1)}{1 \cdot 2 \cdot 3} \cdots \frac{\cdots}{p}
$$

So geben \%. B. bie Eombinationen ber vier ©lemente 1234 zur britten Elafie mit Wieberbolungen, nämlid) $^{\text {a }}$

b. G. in bie Eombinationen ber fedja Elemente 123456 zur britten Elafic obne

 To find im Borigen mur alle biejenigen Complexionen zu unterbriafen, weldice ein Extment Gäufiger enthalten, ats geftattet ift.

binationen oder Wariationen, Die an und für fita mogglide fint, gürtig Gleiben, fondern mur Diejentigen, weldje einer gewiffen Bedingung genügen. So fann z. B. vorgeidurieben fein, Daß bie - Durw Baflen bargeftellen - Elemente jeder einzelnen Complexion Diefelbe beftimmte ©umme geben. Bei Der Bildung folder Sombinationen oder Bariationen hat man
 Eflementen, Die leķte aber mit Dem Ergänzugg =elemente zur vorgefidrie= benen Summe auszufülfen, und Dann fuccefive Die vorbergebenden Stellen $\mathfrak{z}^{\mathfrak{c}}$ ergöhen, mäbrend man die nadjfolgenden $\mathfrak{u m}$ eben io biel erniedrigt, Dabei aber Die übrigen \Re Regeln für Die Bildung Der eingelnen (5mplexionen jelbjtverjtänolid mit Geobadetet. In welden zwei Fällen wird Dieje $\mathfrak{A r t}$ von Eomplexionen unmögli凶?
\mathfrak{Y} noere Derartige Bedingungen tönnen \mathfrak{z}. \mathfrak{B}. jein, Daß̃ Die einzelnen Elemente mit gleidjen Differenzen ober mit gleidjen $\mathfrak{B e r g a ̈ l t n i f f e n ~ j e ~ z m e i e r ~}$ auf einander folgenden fortidfreiten \mathfrak{u}. Dgl. m.

Bon ben $\mathfrak{A n w e n b u n g e n ~ b e r ~ C o m b i n a t i o n s l e f r e ~ a u f ~ v e r i d i e b e n e ~ G e b i e t e ~}$ ber MRathematif und anberer $\mathfrak{F s i f f e n i d a f t e n ~ f o l l ~ h i e r ~ n u r ~ b i e ~ a u f ~ b i e ~ B e r e d u m e n g ~}$
 werben.

5eis $\$ 88-90$. Barbey $\mathbf{X X X V}$.

XI. Capitel.

§ 50.

Huter mathematifider Wahrideinlidfeit cinez Ereigniffee
 Fatle, zu ber $\mathfrak{A} \mathfrak{n z a h l}$ aller überbaupt moggliden fälle.

Sino alfo unter b mögliden foullen a jolde, welde einer beftimmen for= berung genügen, io if $\frac{a}{b}$ bie Wabridjeinlidfeeit für bas Eintreten eintes biefer Forberurg genügenben (günfigen) falles.

Entgegengejeßte Wabrideinlidjeit eines Ereigniffes beiğt Daß
 zahl aller moggtiden.

Sint alfo vont b mëglidien fanllen a günfig, alio $b-a$ ungünflig, fo it tie entgegengéegte Wabridjeinlidj)eit gleid) $\frac{b-a}{b}$.

Die Wabridentidufeit it Demnad) um io geringer - Die entgegen=
 günftigen Fälle im Wergleid) zu Der afler mögliden Fälle ift, und umge=

Reidt, Gitemente ber grattematii. I.
fehrt. - Die Summe Der Wabrideinlidjfeit und Der entgegengejegten Wabrideinlidjfeit eineß̉ Ereigniffes ift immer gleidy 1. - Sind alle mög= liden Fälle zugleid) günfig, io ift Die Wahridjeinlidfleit gleid, 1, bie ent= gegengefeßte gleid 0 . Sind alfe möglidenen Falle ungüntig, io if bie Wahrideinlidjeit gleidy 0 , Die entgegengejebte gleid 1 . Die 1 if alfo
 Ereignifies.

 zu zieflen, gleifi $\frac{8}{14}=\frac{4}{7}=1-\frac{3}{7}$.

§ 51.

Sind unter ben b mögliden Fällen a_{1} güntitige von einer $\mathfrak{A} r t, a_{2}$ günfige einer zweiten \mathfrak{H} rt \mathfrak{u}. โ. w., und find ω_{1}, ω_{2} u. §. w. Die Wabr= iぁeinlidffeiten für Das (Eintreffen eines Falles bezäglid ber erften, zweiten 2Art u. §. w., io ift bie Wabridjeinlidfeit für Das Eintrefien irgend eines günitigen $\mathfrak{F a l l e} \mathfrak{z}$

$$
\omega=\omega_{1}+\omega_{2}+\cdots,
$$

oder bie totale Wabrideinlidfeit für eines won mehreren veridiedenen, aber gleid gültigen Ereigniffen ift gleid) Der Summe Der partiellen Wabriぁjeinlidufeiten.

Denn es ift $\omega=\frac{a_{1}+a_{2}+\cdots}{b}=\frac{a_{1}}{b}+\frac{a_{2}}{b}+\cdots$
Beippiel: Ein ©sefäß enthalte 2 rothe, 3 blaue, 4 getbe unt 5 idpwarge Sugetn. Die Wabrideinlidifeit, aus bemietben eine rothe Rugel zu zieben, if

 ift $\frac{2+3+4}{14}$, ober $\frac{4}{2}+\frac{3}{14}+\frac{2}{4}=\frac{9}{14}$.

§ 52.

Wängt סaß Eintrefien cines Greignififes aber in Der $\mathfrak{A r t}$ bon zwei ober mefbr anderen Exeignififen ab, Dajb lebtere zugleidf (oder nady, einander) eintreffien müfifen, Danit Die geftellte Forberung erfüll fei, fo beipt feine

$$
\omega=\omega_{1} \cdot \omega_{2} \cdot \omega_{3} \cdots
$$

Denn fint für Das̉ erfte Ereigniß von b_{1} mögliduen Fällen a_{1} günfitig,
 $\frac{a_{1}}{b_{1}}, \omega_{2}=\frac{a_{2}}{b_{2}}$ u. i. w., fo fann jeder ber b_{1} möglidien foallle bes erften Ereignifies mit jedem der b_{2} möglidjen bes zweiten, jebe ber jo erbartenen
$b_{1} \cdot b_{2}$ Combinationen mit jebern ber b_{3} müglididen $\mathfrak{F a l l l e}$ beß britten Ereignifiez zulammentrefien u. i. m., Die 2nzahl Der iiberbinupt mügliden
 Der iuberbaupt güntigen Faull gleid) $a_{1} \cdot a_{2} \cdot a_{3} \cdots$, alio ift

$$
\omega=\frac{a_{1} \cdot a_{2} \cdot a_{3} \cdots}{b_{1} \cdot b_{2} \cdot b_{3} \cdots}=\frac{a_{1}}{b_{1}} \cdot \frac{a_{2}}{b_{2}} \cdot \frac{a_{3}}{b_{3}} \cdots=\omega_{1} \cdot \omega_{2} \cdot \omega_{3} \cdots
$$

 ziefen, if gleidid $\frac{1}{7} \cdot \frac{2}{5} \cdot \frac{3}{14}=\frac{3}{3_{3}}$.

 iebe ifter partielter 28abriddeinlidideteiten.

Sino bie partiellen Ereignifife einander gleid) ober WBiederfolungen einez einzigen, io wirb die zulammengeiegte 2sahridecinfidjuteit burd eine Fotenz ber partiellen angegeben. Jit ω die einfadye wBatridecinlidifteit
 $n \mathrm{mal}$ wieberfolt cintrete.
 bie Babl 4 , ober mit jebem won brei शुürfeln zugleid bie 3abl 4 зu werfen, ift $\left(\frac{1}{b}\right)^{3}={ }_{2} t_{\sigma}$.

Goll ein Ereignig miederbort eintrefien, io tritt zuweilen ber fall

 für eine n malige \mathfrak{W} Siebertholung Deffelben in siefen Fralle gleid

$$
\frac{a \cdot(a-1) \cdot(a-2) \cdots(a-n+1)}{b \cdot(b-1) \cdot(b-2) \cdots(b-n+1)}
$$

Beifpier: Gin छefäß enthalte 5 weibe und 6 ifiwarze sugelr. Die शsabridecinliadfeit fünfmal nady einanber aus bemielben eine weibe §uget zu ziefent, wenn iece gesogene תugge nidft wieber in baş Gefäß zurriilgegegt wirb, if $\frac{5}{11} \cdot \frac{4}{10} \cdot \frac{3}{8} \cdot \frac{2}{8} \cdot \frac{1}{2}=\frac{1}{462}$.
 und zugleid cin zweites Ereignig m mal eintrete, io erfgalt man für bie=
 Diefer Ereigniffe fiid bei feinem wiederholten Eintreffen nidt verändert,

$$
\omega=\left(\frac{a}{b}\right)^{n} \cdot\left(\frac{c}{d}\right)^{m},
$$

¡ofern $\frac{a}{b}$ unt $\frac{c}{d}$ Die Wablrideinlidfeciten für bas einmalige Eintrefien Des eriten, begiefungăweife Des zreiten Erreignifies find, und eine be= ftimmte æeihenfolge für Daふ̉ Eintreten Der einzelnen Éreignifie vorge=秞rieben ift.
 für jedes erneute Cintreffen eines Greigniffes um 1 ab，fo erbält man unter jonft gleidjen Bedingungen Die Wabrideinlidufeit ω＝ $\frac{a(a-1)(a-2) \cdots(a-n+1)}{b \cdot(b-1)(b-2) \cdots(b-n+1)} \cdot \frac{c(c-1)(c-2) \cdots(c-m+1)}{d(d-1)(d-2) \cdots(d-m+1)}$

Sit Dagegen Die Reibenfolge für Das Eintreffen ber eingelnen Errig＝ niffe nidy vorgefdrieben，to Gat man Der vorber beftimmoten Wabridein＝

Beifpiele：Die Wabrideinlidjfeit mit cinem Würfel zuerft breimal binter＝ einanber（ober mit jebem bon brei $\mathfrak{W u ̈ r i e l n}$ zugleidi）bie $\mathfrak{B a b l} 1$ ，unt fobann
 lidfeit unter 7 W3urfen überbaupt breimal 1 unb viermal 6 zu werfen，obne Müưfiidt auf bie Жeibenfolge ber 刃iuffe，ift $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 1 \cdot 2 \cdot 3} \cdot\left(\frac{1}{6}\right)^{3} \cdot\left(\frac{1}{6}\right)^{4}=$ $\frac{7 \cdot 6 \cdot 5}{1 \cdot 2 \cdot 3} \cdot \frac{1}{6^{7}}=\frac{35}{279936}$.

Die Wabrideinlidffeit unter 7 Würfen mit einem Wuirfel breimal bic Babl 1，alfo biermal eine anbere Zafll z^{2} werfen，ift，wenn eine beftimmte \Re eibenfolge ber cinzelnen W3irfe vorgelffricben ift，$\left(\frac{1}{6}\right)^{3} \cdot\left(\frac{5}{6}\right)^{4}=\frac{625}{279536}$ ，wemn aber biefe Reibenfolge nidtt vorgefidrieben iff，$\frac{7 \cdot 6 \cdot 5}{1 \cdot 2 \cdot 3} \cdot\left(\frac{1}{6}\right)^{3} \cdot\left(\frac{5}{6}\right)^{4}=\frac{21875}{279936}$ ．

Die 2sabrideinlidfeit，aus einem ©efäß mit 5 weisen und fedis idmarzen
 nidit mieber in bas Gefäß zurüăgelegt virb，if bei beftimmter Æeibenfolge ber cingelnen Büge $\frac{5}{1 T} \cdot \frac{4}{10} \cdot \frac{3}{9} \cdot \frac{6}{8} \cdot \frac{5}{7}=\frac{5}{154}$ ，bei nidit beftimmter Reibenfolge $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{1 \cdot 2 \cdot 3 \cdot 1 \cdot 2} \cdot \frac{5 \cdot 4 \cdot 3 \cdot 6 \cdot 5}{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7}=\frac{5 \cdot 4}{1 \cdot 2} \cdot \frac{5 \cdot 4 \cdot 3 \cdot 6 \cdot 5}{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7}=\frac{25}{77}$

§． 53.

Soll Die Wabrideinlideteit beftimmt merben，baỉ von zmei veridie＝ Denen Errigniffen，Deren einfade Wabrideinlidjeciten bezüglidy ω_{1} und ω_{2} find，entweder DaB erfte，ober，wenn Diefes nidt geidiebt，Dann body bab 3meite eintreffe，io it Die einfactle Wahrideinlidifecit für Das Cintreffen Deş exften Ereignifies ω_{1} ，Die zujammengejebte Dafür，Dẩ Das erite Err eignis nidat，Dann aber das zweite eintrete，$\left(1-\omega_{1}\right) \omega_{2}$ ，die totale Wahrideinlidfeit aljo $\omega_{1}+\left(1-\omega_{1}\right) \cdot \omega_{2}=\omega_{1}+\omega_{2}-\omega_{1} \cdot \omega_{2}$ ．

Beifpiel：Die æafrídeinlidfeet，baß entweber mit brei Würfeln zuerft bie Summe 10，ober，wenn bies niđ）t geidiebt，bei bem zweiten $\mathfrak{F u r f e}$ bie Summe 12 geworfen werbe，if $\frac{27}{216}+\left(1-\frac{27}{216}\right) \cdot \frac{25}{216}=\frac{1}{8}+\frac{7}{8} \cdot \frac{25}{216}=\frac{391}{1728}$ ．

Unter relativer Wabriぁeinliぁffeit eines ©reigniffes in Bezug auf ein anderesె Ereigniß verftegt man biejenige $\mathfrak{W a b r i d e i n l i d) f e i t , ~ w e l d e ~ m a n ~}$ erbält，went unter Den mögliden శ̛allen nur diejenigen in Æedjuung ge＝ zogen werben，welde entweder Dem einen oder Dem anderen jener beiben Ereigniffe günftig find，to Daß alfo Diejenigen，welde feinem bon beiben
günfig finv, unbead.tet breiben. Sind von n überbaupt mögtiden Fallent a bent erften und b Dem zweiten günfig, alfo die ,"abjoluten" Wabzridein= lidfeiten biejer Ereignifie beziehunganeife $\omega_{1}=\frac{a}{n}, \omega_{2}=\frac{b}{n}$, io ift Die relative Wakridjeinlidufeit Des̉ erfteren Giernady $\omega=\frac{a}{a+b}$, Die bes zweiten $\omega^{\prime}=\frac{b}{a+b}\left(a r f o\right.$ mieder $\left.\omega+\omega^{\prime}=1\right)$. Fieraus forgt, Daik Die relative Wabridjeinlidfeit ω eineş Gereignifieß gefunden wird, indem
 ten Wabhrideinlidgfeiten Divibirt, oder Daß

$$
\omega=\frac{\omega_{1}}{\omega_{1}+\omega_{2}}
$$

if. - Relative Wanhrideinlidfeit bei mefr als zmei Ereigniffen.
 werfen, ift $\omega_{1}=\frac{1}{36}=\frac{1}{3} ; \omega_{2}=\frac{1}{36}$, ario $\omega=\frac{\frac{1}{9}}{\frac{1}{9}+\frac{1}{36}}=\frac{1}{3}$.

*§ 54.

 fpielen und $2 s e t t e n$, wo es fich um ©eminn ober Berluit ciner beftimmten Summe

 Fälle eintrete, melde bem erften Exieler günfig. fint und a_{1} ber Ginfak befielben, fint ferner ω_{2} und a_{2} bie entipredjenben Sablen für ben zmeiten ©pieler, to muछ $\omega_{1}: \omega_{2}=a_{1}: a_{2}$, Dber $\omega_{1} \cdot a_{2}=\omega_{2} \cdot a_{1}$ fein. Das Froduct aus ber 2sabrideinlidifeit ou gewinnen in bert zu erwartenben Bewinn beißt bie mathe $=$ matijde ©rwartung bes betreffenben Spiefers. Diefe mathematififen Ermar= turgen müfien alio einanber gleid fein.
 Berfidferungsbanfen. Die ßrämie, weldfe ber Beriidferte ber verfiffernben Bant §u zablen bat, Gängt auber von ber ©fröße ber eintretenben fallz von ber Bant зи zablenben ভumme and bon ber Wabridecinlidjfeit für bas Gintreten biefes Falles ab. Diefe W̧abridennlidfeit wirb auf Erunb fatititifice Ermittelungen feitgeitellt.
 ber (Ermittelung bes makridjeinlidjen Geblers angeftelter Mefiungen ober $\mathfrak{B e o b}=$

 Onwerioung ber genaueften $\mathfrak{y u l f s m i t t e l}$ niemals ein abjolut ridftiges \Re §fultat erwarten fönnen, bielmelyr werben in foldfen fällen no屯 gewifie fleine Febler übrig bleiben, welde fiab niemals ganz vermeiben lafien, ba ifre Sutllen nidit befeitigt ober in Æecfung gejogen werben tönen. (Soldje feblerquelfen find 3. 2. ber Mrangel an abjoluter Bolfommenbeit ber Meß̄inftrumente fowie ber
 with man bei cinter Wieberfolung ber Mefiung cin sweites æefultat erfaltent, tweldes bon bem vorigent um eine, went audi) fefr fleine, Größ̉e afweidit. Die 2(usgleiduungiredinung lehrt nun aus biefen 2abweiduungen verjajebener Miefingen
 Yidfeit bat, der gentau ridtige zu fein, ober bie wahrideinlidien Fefler ber eingetnen Mreffungen zu beftinmen. Sie ftellt zu biefem 3 wecte ben Sak auf, baß

 Abweidungen überfaupt fehr fleine ©sor̈ßent, alio nur folgen ber unvermeiblidfen Febjerquellen feien (Mrethobe ber fleinften Quabrate). Dabei Kat bas 凡ejultat um To gröberen 2(nipruă) auf ©enauigfeit, ie biter bie Méfinug wieberfolt wurbe. In
 nämlidy ber æeffitng einer cinzelnen felbitänoigen (Srb̈be (einer \&inie $A B$), fühtr bas ærincip ber fleiniten Quabrate auf bie Æegel, bajß man bie Summe ber ein= zelnen gemefienen $\mathfrak{W e r t h e}$ burd ifre $\mathfrak{A n z a b l}$ dividiren, d. i. bas aritymetifde $\mathfrak{M i t t e l}$ aut biefen Wertben netgmen muछً.

Seis $\$ 91$. Barbey XXXVI.

XII. Capitel.

§ 55.

Die $\mathfrak{A} u$ fgabe, eine झotenz eineß Binoms $a \pm b$ zu entwideln, ift ein ipecieller Foall Der $\mathfrak{A l f g a b e}$, ein $\mathfrak{F r o D u c t ~ v o n ~ D e r ~ F o r m ~}$

$$
(x \pm a)(x \pm b)(x \pm c) \cdots(x \pm m)
$$

Durd) Miultiplication jemer Factoren als (algebraijaje) Summe von Sartialproducten auszzubrücten. Man erbält zu Diejem Swedf burd 9xus= fülurung Der Maultiplication nadi) \mathbb{S} 13. (sil. (29):

$$
(x+a)(x+b)=x^{2}+(a+b) x+a b
$$

$$
(x+a)(x+b)(x+c)=x^{3}+(a+b+c) x^{2}+(a b
$$ $+a c+b c) x+a b c$,

$(x+a)(x+b)(x+c)(x+d)=x^{4}+(a+b+c+d) x^{3}$ $+(a b+a c+a d+b c+b d+c d) x^{2}+(a b c+a b d+a c d$ $+b c d) x+a b c d$, u. §. w.

Man erfennt leidyt in Diejen einzefnen - nad abjteigenden Botenzen bon x georoneten - Entwiđ̌elungen ein gemeinjames Bildungşgefeg, nad weldjem (jeine allgemeine ©finltigteit voraugegejegt) ein ßrobuct von n yractoren $(x+a)(x+b)(x+c) \cdots(x+m)$ bie $\mathfrak{y o r m}$

$$
x^{n}+A x^{n-1}+B x^{n-2}+C x^{n-3}+\cdots+L x+M
$$

ergalten würbe. Jn biefer leķteren Reike erbält man Den Cocficicientert A Durd) 2bobition ber fämmtlident einzelnen Summanden $a, b, c \cdots m$, Den ©oefficienten B Durd Bildung fämmtlider Combinationen biejer Sum= manden zur zweiten (Slaffe und Mbdition Der aus Den Elementen Diejer einzetnen ©ombinationen gebildeten $\mathfrak{F r o d u c t e}$. In gleiffer Weife wirs C Durdi Die Combinationen ber Summanden $a, b, c \cdots m$ zur britten ©lafie, u. ¡. m., alfgemein ber Eocficient Der Fotenz x^{n-p} burd) Die Eombina=
 fämmtlider Summanden. Bezeidnet man Den ausz ben Combinationen Der n Elemente zur $p^{\text {ten }}$ (Elaffe gebitbeten (Evefficient Durd) C_{p}^{n}, io if alio $(x+a)(x+b)(x+c) \cdots(x+m)=x^{n}+C_{1}^{n} x^{n-1}+C_{2}^{n} x^{n-2}$ $+C_{3}{ }^{n} x^{n-3}+\cdots+C_{n-1}^{n} x+C_{n}^{n}$.

Der Bemeis der affgemeinen ©fütigfeit Diefes ©ejetses fant
 (3ültigkeit Desjelben für ein Wrobuct von n Fractoren als riditig erfannt, To erbalt man bei Sbinufügung eines meiteren foctorß $x+q$ burdi Miultiplication bie Entwiffelung:

$$
x^{n+1}+C_{1}^{n} x^{n}+C_{2}^{n} x^{n-1}+C_{3}{ }^{n} x^{n-2}+\cdots+C_{n-1}^{n} x^{2}+C_{n}^{n} x
$$ $+q x^{n}+q C_{1}{ }^{n} x^{n-1}+q C_{2}{ }^{n} x^{n-2}+\cdots+q C_{n-2}^{n} x^{2}+q C_{n-1}^{n} x+q C_{n}^{n}$, oder, Da $C_{p}{ }^{n}+q C_{p-1}^{n}=C_{p}{ }^{n+1}$ ift,

$x^{n+1}+C_{1}^{n+1} x^{n}+C_{2}^{n+1} x^{n-1}+C_{3}^{n+1} x^{n-2}+\cdots+C_{n}^{n+1} x$ $+C_{n+1}^{n+1}$.

Daß obige Bildungzegejek gilt aljo aud für $n+1$ factoren. Wier: mit ift aber, wie leidyt einzujeben, jeine allgemeine ©finttigteit als erwiejen zu betraduten.

Daß §robuct $(x-a)(x-b)(x-c) \cdots(x-m)$ fant burd ein entipredjendes शerfabren entwictelt werbern. Rürzer ift Die 9Gbleitung Defferben aus der vorftebenden Entwiffelung, indent man Die Summanden a, b, c u. f. w. als negatio betraditet und fatt derfelben bezuglidi - a, $-b,-c$ u. f. w. idureibt. Man ergält Dann (mit Bemutzug von $\$ 15$.)

$$
x^{n}-C_{1}{ }^{n} x^{n-1}+C_{2} x^{n-2}-C_{3}{ }^{n} x^{n-3}+\cdots+(-1)^{n} C_{n}^{n},
$$

b. ל. Diejelbe Entwidexlung wie vorber, aber mit abwedjelnden Borzeiden Der einzelnen Sflieder.
$\mathfrak{A} \mathfrak{H m e r f u n g}$: Fin Wrobuct, in welduem eingetne ber Summanben a, b, u. f. w.

§ 56.

Sind bie einzelnen Summanden a, b, c u. f. w. einanber gleidy, io ift nadi $\int 49$:

$$
C_{1}^{n}=n \cdot a, C_{2}^{n}=\frac{n \cdot(n-1)}{1 \cdot 2} \cdot a^{2}, C_{3}^{n}=\frac{n \cdot(n-1)(n-2)}{1 \cdot 2 \cdot 3} a^{3},
$$

allgemein $C_{p}{ }^{n}=\frac{n(n-1)(n-2)(n-3) \cdots(n-p+1)}{1 \cdot 2 \cdot 3 \cdot 4 \cdots \cdots} a^{p}$,
und jomit
$(x+a)^{n}=x^{n}+n \cdot a \cdot x^{n-1}+\frac{n(n-1)}{1 \cdot 2} a^{2} \cdot x^{n-2}$ $+\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} \cdot a^{3} \cdot x^{n-3}$
$+\cdots+\frac{n(n-1)(n-2) \cdots(n-p+1)}{1 \cdot 2 \cdot 3 \cdots p} a^{p} \cdot x^{n-p}+\cdots+a^{n}$
$(x-a)^{n}=x^{n}-n \cdot a \cdot x^{n-1}+\frac{n(n-1)}{1 \cdot 2} a^{2} \cdot x^{n-2}$
$-\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} a^{3} x^{n-3}$
$+\cdots+(-1)^{p} \cdot \frac{n(n-1)(n-2) \cdots(n-p+1)}{1 \cdot 2 \cdot 3 \cdots p} a^{p} \cdot x^{n-p}$ $+\cdots+(-1)^{n} a^{n}$.

Dieje beiben Formeln führen Den 刃amen "Binomijder \&ebrjak" unt werben gäufig audd in ber fornt
(1) $(a \pm b)^{n}=a^{n} \pm n \cdot a^{n-1} \cdot b+\frac{n(n-1)}{1 \cdot 2} a^{n-2} b^{2}$ $\pm \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} a^{n-3} b^{3}$
$+\cdots+(\pm 1)^{p} \frac{n(n-1)(n-2) \cdots(n-p+1)}{1 \cdot 2 \cdot 3 \cdots p} a^{n-p} b^{p}$ $+\cdots \cdots+(\pm 1)^{n} b^{n}$ geidurieben.
\mathscr{H} merfung: Die (Eoefficienten $n, \frac{n(n-1)}{1 \cdot 2}$, u. f. w. werben bie $\mathfrak{B i n} \mathcal{D}=$

Die formel für $(a-b)^{n}$ fant aus ber für $(a+b)^{n}$ abgeleitet werben, inbem man in legterer b als negatio annimmt.
 enolide, und zwar gleidy $(n+1)$, Dentr Der Soefficient Des $n+2^{\text {ten }}$ Sliedes würde, wie alle folgenden, Den Factor Sull enthalten.
2) Die Exponenten won a nefmen in jebem folgenden Sliede um 1 $\mathfrak{a b}$ und erbalten to bie Wherthe von n bis 0 ; Die Exponenten von b negmen in gleider Weife von 0 bis n zu; Die Summe Der 'Exponenten won a und b ift in jedem (sfiede gleidia n.
3) Der Evefficient Des Yeß̧ten (SHliedes ift gleid, Dem Deß erjten, Der Evefficient Des vorlegten glei凶, Dem Des zweiten u. f. m., oder Die (Eveffi= cienten Der erften Sälfte Der Binomialreige febren in Der fweiten in ums gefebrter Reigenfolge mieder.

Denn es ift Der Evefficient Desె $p^{\text {ten }}$ Siliedes
$\frac{n \cdot(n-1) \cdots(n-p+2)}{1 \cdot 2 \cdots(p-1)}$, der beß $p^{\text {ten }}$ vom Ende an gerefifnet, voer des $n-p+2^{\text {ten }}$ Crliedes
$n \cdot(n-1) \cdots(n-p+2) \cdot(n-p+1)(n-p) \cdots(p+1) \cdot p$
$1 \cdot 2 \cdots(p-1) \cdot p \cdot(p+1) \cdots(n-p)(n-p+1)$
$=\frac{n(n-1) \cdots(n-p+2)}{1 \cdot 2 \cdots(p-1)}$.

5) Man ergält auz Den Binomialcoefficienten für irgend eine Wotenz n bie ber nädjf Göheren §otenz $n+1$, indem man je zmei benadjbarte Der erfteren (mit Giniduluß von $\binom{n}{0}=1$ und $\binom{n}{n}=1$) adbirt.

Dertr ez

$$
\binom{n}{p}=\frac{n(n-1) \cdots(n-p+2)(n-p+1)}{1 \cdot 2 \cdots(p-1) \cdot p}
$$

$\binom{n}{p-1}=\frac{n(n-1) \cdots(n-p+2)}{1 \cdot 2 \cdots(p-1)}$,
$\mathfrak{a l j o}\binom{n}{p}+\binom{n}{p-1}=\frac{n \cdot(n-1) \cdots(n-p+2)}{1 \cdot 2 \cdots(p-1)}\left(\frac{n-p+1}{p}+1\right)$ $=\frac{(n+1) \cdot n \cdot(n-1) \cdots(n-p+2)}{1 \cdot 2 \cdots(p-1) \cdot p}=\binom{n+1}{p}$.

Wiernadu tann man die (Soefficienten für bie einzelnen Potenzen leidjt in folgender form aufitellen (Fascal'iajes Dreiecti):

6) Seß̧t man in $(a+b)^{n}, a=1, b=1$, jo erbält man $2^{n}=1+n+\frac{n(n-1)}{1 \cdot 2}+\cdots \cdot$,
Die Summe Der Coefficientent Der Binomialtribe ift gleid) Der $n^{\text {ten }}$ ßoterz yon 2.

Man beredune audi Die Summe ber (Soeficienten ber abwedjelnden ($1^{\text {ten }}, 3^{\text {ten }}, 5^{\text {ten }}$, u. ¡. w.) Slieder.

§ 57.

Die Fotenz eines Trinom $(a \pm b \pm c)^{n}$ finoet man mit §ुulfe Des binomijajen Lehrjakes, indem man Das Trinom zunädif ala ein Binom $(a \pm b) \pm c$ betradtet, lebsteres potenzirt und Die einzelnen Sflieder ber entifebenden Reike wieder mittelif dea binomifijen Rebriaßez entwifelelt, 子. \mathfrak{B}.
$(a+b-c)^{3}=(a+b)^{3}-3(a+b)^{2} c+3(a+b) c^{2}-c^{3}$ $=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}-3 a^{2} c-6 a b c-3 b^{2} c+3 a c^{2}$ $+3 b c^{2}-c^{3}$, ober
$a^{3}+b^{3}-c^{3}+3\left(a^{2} b+a b^{2}-a^{2} c+a c^{2}-b^{2} c+b c^{2}\right)-6 a b c$.
In äfnlider W̧eife fam man bie Sotenzen von Quabrinomen, u. f. f. entwideln. (Bolynomifider Lebriak.)
$\mathfrak{A n m e r f u n g : ~ D e r ~ b i n o m i l d e ~ S e b r i a k ~ i f ~ i m ~ F o r i g e n ~ n u r ~ u n t e r ~ b e r ~ f i l l t ~}$
 Sahl fei. Die böbere Mathematif zeigt, baß̃ berjelbe auđ für jebe anbere Beidaffen= beit bes Exponenten gilt, nur ift bann bie $\mathfrak{A n z a b l}^{2}$ feiner ©flieber unbegrenzt, unb baher bie entitebenbe unenolidje Æeibe nur auf bic శुalle anmenbbar, in welden biefelfe convergirt.

5eis $\$ 40,92$. Barben XXXVI_{1}.

Bibliothek Tedniifdie foumfoule 6eaz

[^0]: Unmerfung: Man fieft aus bem ©ejagten, baß aus ben ©ombinationen bie entipreffenben $\mathfrak{B a r i a t i o n e n ~ g e b i l b e t ~ m e r b e n ~ f o ̈ n e n , ~ i n b e m ~ m a n ~ b o n ~ i e b e r ~ b e r ~ e r f t e r e n ~}$

